Multi-objective optimization for stochastic computer networks using NSGA-II and TOPSIS

被引:78
|
作者
Lin, Yi-Kuei [1 ]
Yeh, Cheng-Ta [1 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Dept Ind Management, Taipei 106, Taiwan
关键词
Reliability; Multiple objective programming; Stochastic computer network; Non-dominated sorting genetic algorithm II; Technique for order preference by similarity to ideal solution; GENETIC ALGORITHM; RELIABILITY OPTIMIZATION; ASSIGNMENTS SUBJECT; DESIGN;
D O I
10.1016/j.ejor.2011.11.028
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
Network reliability is a performance indicator of computer/communication networks to measure the quality level. However, it is costly to improve or maximize network reliability. This study attempts to maximize network reliability with minimal cost by finding the optimal transmission line assignment. These two conflicting objectives frustrate decision makers. In this study, a set of transmission lines is ready to be assigned to the computer network, and the computer network associated with any transmission line assignment is regarded as a stochastic computer network (SCN) because of the multistate transmission lines. Therefore, network reliability means the probability to transmit a specified amount of data successfully through the SCN. To solve this multiple objectives programming problem, this study proposes an approach integrating Non-dominated Sorting Genetic Algorithm II (NSGA-II) and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). NSGA-II searches for the Pareto set where network reliability is evaluated in terms of minimal paths and Recursive Sum of Disjoint Products (RSDP). Subsequently, TOPSIS determines the best compromise solution. Several real computer networks serve to demonstrate the proposed approach. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:735 / 746
页数:12
相关论文
共 50 条
  • [31] Multi-objective optimization of liquid metal bearing based on NSGA-II
    Tang, Siwei
    Zhang, Guohua
    Zheng, Yueqing
    Xie, Gongnan
    Cui, Hailong
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART J-JOURNAL OF ENGINEERING TRIBOLOGY, 2025, 239 (02) : 151 - 162
  • [32] A improved NSGA-II algorithm for constrained multi-objective optimization problems
    Wang, Maocai
    Wu, Yun
    Dai, Guangming
    Hu, Hanping
    PROGRESS IN INTELLIGENCE COMPUTATION AND APPLICATIONS, PROCEEDINGS, 2007, : 117 - 119
  • [33] Multi-objective Optimization Scheduling Model Based on NSGA-II Algorithm
    Bian, Ruifeng
    Tan, Wenyi
    Li, Yilun
    Hou, Yichen
    2020 IEEE THE 3RD INTERNATIONAL CONFERENCE ON ELECTRONICS AND COMMUNICATION ENGINEERING (ICECE), 2020, : 149 - 156
  • [34] Multi-objective Optimization for AUV Conceptual Design Based on NSGA-II
    Xia, Guoqing
    Liu, Caiyun
    Chen, Xinghua
    OCEANS 2016 - SHANGHAI, 2016,
  • [35] A Comprehensive Review on NSGA-II for Multi-Objective Combinatorial Optimization Problems
    Verma, Shanu
    Pant, Millie
    Snasel, Vaclav
    IEEE ACCESS, 2021, 9 : 57757 - 57791
  • [36] Multi-objective optimization of 6-DOF deposition trajectories using NSGA-II
    Juan C. Guacheta-Alba
    Diego A. Nunez
    Max Suell Dutra
    Mauricio Mauledoux
    Oscar F. Aviles
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2023, 45
  • [37] Is NSGA-II Ready for Large-Scale Multi-Objective Optimization?
    Nebro, Antonio J.
    Galeano-Brajones, Jesus
    Luna, Francisco
    Coello Coello, Carlos A.
    MATHEMATICAL AND COMPUTATIONAL APPLICATIONS, 2022, 27 (06)
  • [38] Multi-Objective Network Coding Optimization Based On NSGA-II Algorithm
    Hao, Kun
    Wang, Beibei
    Luo, Yongmei
    2012 INTERNATIONAL CONFERENCE ON CONTROL ENGINEERING AND COMMUNICATION TECHNOLOGY (ICCECT 2012), 2012, : 843 - 846
  • [39] Multi-objective optimization of FCC separation system based on NSGA-II
    Liu, Yingjie
    Chu, Menghao
    Ye, Qing
    Li, Jinlong
    Han, Deqiu
    CHEMICAL ENGINEERING SCIENCE, 2025, 302
  • [40] Multi-objective optimization of a hybrid distributed energy system using NSGA-II algorithm
    Hongbo Ren
    Yinlong Lu
    Qiong Wu
    Xiu Yang
    Aolin Zhou
    Frontiers in Energy, 2018, 12 : 518 - 528