On the Almost Sure Location of the Singular Values of Certain Gaussian Block-Hankel Large Random Matrices

被引:8
|
作者
Loubaton, Philippe [1 ]
机构
[1] Univ Paris Est, UMR CNRS 8049, Lab Informat Gaspard Monge, 5 Bd Descartes, F-77454 Marne La Vallee 2, France
关键词
Singular value limit distribution of random complex Gaussian large block-Hankel matrices; Almost sure location of the singular values; Marcenko-Pastur distribution; Poincare-Nash inequality; Integration by parts formula; CONVERGENCE; EIGENVALUES;
D O I
10.1007/s10959-015-0614-z
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper studies the almost sure location of the eigenvalues of matrices , where is a block-line matrix whose block-lines are independent identically distributed Hankel matrices built from i.i.d. standard complex Gaussian sequences. It is shown that if and , then the empirical eigenvalue distribution of converges almost surely towards the Marcenko-Pastur distribution. More importantly, it is established using the Haagerup-Schultz-Thorbjornsen ideas that if with , then, almost surely, for large enough, the eigenvalues of are located in the neighbourhood of the Marcenko-Pastur distribution. It is conjectured that the condition is optimal.
引用
收藏
页码:1339 / 1443
页数:105
相关论文
共 13 条
  • [1] On the Almost Sure Location of the Singular Values of Certain Gaussian Block-Hankel Large Random Matrices
    Philippe Loubaton
    Journal of Theoretical Probability, 2016, 29 : 1339 - 1443
  • [2] On the singular values of Gaussian random matrices
    Shen, JH
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2001, 326 (1-3) : 1 - 14
  • [3] EIGENVALUES AND SINGULAR-VALUES OF CERTAIN RANDOM MATRICES
    ANDREW, AL
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1990, 30 (02) : 165 - 171
  • [4] Eigenvalues and singular values of products of rectangular Gaussian random matrices
    Burda, Z.
    Jarosz, A.
    Livan, G.
    Nowak, M. A.
    Swiech, A.
    PHYSICAL REVIEW E, 2010, 82 (06)
  • [5] Singular values of large non-central random matrices
    Bryc, Wlodek
    Silverstein, Jack W.
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2020, 9 (04)
  • [6] EIGENVALUES AND SINGULAR VALUES OF PRODUCTS OF RECTANGULAR GAUSSIAN RANDOM MATRICES - THE EXTENDED VERSION
    Burda, Zdzislaw
    Nowak, Maciej A.
    Jarosz, Andrzej
    Livan, Giacomo
    Swiech, Artur
    ACTA PHYSICA POLONICA B, 2011, 42 (05): : 939 - 985
  • [7] Spectral densities of singular values of products of Gaussian and truncated unitary random matrices
    Neuschel, Thorsten
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2020, 9 (04)
  • [8] Estimation of singular values of very large matrices using random sampling
    Kobayashi, M
    Dupret, G
    King, O
    Samukawa, H
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2001, 42 (10-11) : 1331 - 1352
  • [9] Almost sure uniform convergence of a random Gaussian field conditioned on a large linear form to a non random profile
    Mounaix, Philippe
    STATISTICS & PROBABILITY LETTERS, 2019, 148 : 164 - 168
  • [10] The singular values and vectors of low rank perturbations of large rectangular random matrices
    Benaych-Georges, Florent
    Nadakuditi, Raj Rao
    JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 111 : 120 - 135