On manifolds with trivial logarithmic tangent bundle: The non-kahler case

被引:6
|
作者
Winkelmann, Joerg [1 ]
机构
[1] Univ Bayreuth, Inst Math, D-95447 Bayreuth, Germany
关键词
Isotropy Group; Tangent Bundle; Toric Variety; Compact Complex Manifold; Fundamental Vector;
D O I
10.1007/s00031-008-9003-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study non-Kahler manifolds with trivial logarithmic tangent bundle. We show that each such manifold arises as a fibre bundle with a compact complex parallelizable manifold as basis and a compactficiation of a semi-torus as fibre.
引用
收藏
页码:195 / 209
页数:15
相关论文
共 50 条
  • [1] Hyperbolic geometry and non-Kahler manifolds with trivial canonical bundle
    Fine, Joel
    Panov, Dmitri
    GEOMETRY & TOPOLOGY, 2010, 14 (03) : 1723 - 1763
  • [2] On manifolds with trivial logarithmic tangent bundle
    Winkelmann, J
    OSAKA JOURNAL OF MATHEMATICS, 2004, 41 (02) : 473 - 484
  • [3] On Manifolds with Trivial Logarithmic Tangent Bundle: The Non-Kähler Case
    Jörg Winkelmann
    Transformation Groups, 2008, 13 : 195 - 209
  • [4] Logarithmic Cartan geometry on complex manifolds with trivial logarithmic tangent bundle
    Biswas, Indranil
    Dumitrescu, Sorin
    Morye, Archana S.
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2024, 97
  • [5] Homogeneous Principal Bundles over Manifolds with Trivial Logarithmic Tangent Bundle
    Azad, Hassan
    Biswas, Indranil
    Khadam, M. Azeem
    JOURNAL OF LIE THEORY, 2019, 29 (04) : 941 - 956
  • [6] Kahler manifolds with split tangent bundle
    Brunella, Marco
    Pereira, Jorge Vitorio
    Touzet, Frederic
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2006, 134 (02): : 241 - 252
  • [7] Non-Kahler attracting manifolds
    Dall'Agata, G
    JOURNAL OF HIGH ENERGY PHYSICS, 2006, (04):
  • [8] Classes of compact non-Kahler manifolds
    Alessandrini, Lucia
    COMPTES RENDUS MATHEMATIQUE, 2011, 349 (19-20) : 1089 - 1092
  • [9] Geometric transitions on non-Kahler manifolds
    Knauf, Anke
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2007, 55 (01): : 5 - 107
  • [10] On non-Kahler degrees of complex manifolds
    Angella, Daniele
    Tomassini, Adriano
    Verbitsky, Misha
    ADVANCES IN GEOMETRY, 2019, 19 (01) : 65 - 69