Mudstone diversity: Origin and implications for source, seal, and reservoir properties in petroleum systems

被引:380
作者
Aplin, Andrew C. [1 ]
Macquaker, Joe H. S. [2 ]
机构
[1] Newcastle Univ, Sch Civil Engn & Geosci, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[2] Mem Univ Newfoundland, Dept Earth & Atmospher Sci, St John, NF A1B 3X5, Canada
基金
加拿大自然科学与工程研究理事会; 英国自然环境研究理事会;
关键词
DRIVEN SEDIMENT TRANSPORT; GRAIN-SIZE CHARACTERISTICS; CLAY MINERAL DIAGENESIS; PORE-SCALE PROPERTIES; TOTAL ORGANIC-CARBON; RECENT DEEP-SEA; CONTINENTAL-SHELF; MARINE SNOW; UNFLOCCULATED SEDIMENTS; MECHANICAL COMPACTION;
D O I
10.1306/03281110162
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Mudstone is the most abundant sedimentary rock and variously acts as sources, seals, and shale gas reservoirs in petroleum systems. Many important physicochemical properties of mudstones are strongly influenced by the mineralogy and size of deposited grains, and by diagenetic changes (precompaction and postcompaction); these are commonly predictable. The diverse composition of mudstones reflects input and hydrodynamic segregation of detrital materials to basins, primary production within basins, and diagenetic processes (both precipitation and dissolution) in the sediment. High-magnification observations both in modern and ancient sediments demonstrate that mudstones are texturally and mineralogically heterogeneous; this variability is not always readily apparent. Although some mud is indeed deposited by suspension settling out of low-energy buoyant plumes, textural analyses reveal that it is commonly dispersed by a combination of waves, gravity-driven processes, and unidirectional currents driven variously by storms and tides. Such dispersal mechanisms mean that muddy successions are typically organized into packages that can be interpreted using sequence stratigraphy. Early bioturbation homogenizes mud, whereas early chemical diagenesis can result in highly cemented zones developing, especially at stratal surfaces. The nature of deeper burial diagenesis, which involves compaction, mineral dissolution, re-crystallization, mineral reorientation and lithification, and petroleum generation, is preconditioned by depositional and early diagenetic characteristics of the mud. Although the petrophysical properties of homogeneous mudstones are reasonably well known, the quantitative implications of heterogeneity for petroleum expulsion, retention, petroleum migration, seal capacity, acoustic anisotropy, and identification of shale gas reservoir sweet spots are essentially unexplored. Future work should seek to redress this position.
引用
收藏
页码:2031 / 2059
页数:29
相关论文
共 271 条