Automated Segmentation of Intraretinal Cystoid Fluid in Optical Coherence Tomography

被引:128
作者
Wilkins, Gary R.
Houghton, Odette M. [2 ]
Oldenburg, Amy L. [1 ,3 ]
机构
[1] Univ N Carolina, Dept Phys & Astron, Dept Biomed Engn, Chapel Hill, NC 27599 USA
[2] Univ N Carolina, Dept Ophthalmol, Chapel Hill, NC 27599 USA
[3] Univ N Carolina, Biomed Res Imaging Ctr, Chapel Hill, NC 27599 USA
基金
美国国家卫生研究院;
关键词
Biomedical imaging; computer-aided diagnosis; macular edema; optical coherence tomography (OCT); SPECKLE NOISE-REDUCTION; DIABETIC MACULAR EDEMA; LAYER SEGMENTATION; IMAGES;
D O I
10.1109/TBME.2012.2184759
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Cystoid macular edema (CME) is observed in a variety of ocular disorders and is strongly associated with vision loss. Optical coherence tomography (OCT) provides excellent visualization of cystoid fluid, and can assist clinicians in monitoring the progression of CME. Quantitative tools for assessing CME may lead to better metrics for choosing treatment protocols. To address this need, this paper presents a fully automated retinal cyst segmentation technique for OCT image stacks acquired from a commercial scanner. The proposed method includes a computationally fast bilateral filter for speckle denoising while maintaining CME boundaries. The proposed technique was evaluated in images from 16 patients with vitreoretinal disease and three controls. The average sensitivity and specificity for the classification of cystoid regions in CME patients were found to be 91% and 96%, respectively, and the retinal volume occupied by cystoid fluid obtained by the algorithm was found to be accurate within a mean and median volume fraction of 1.9% and 0.8%, respectively.
引用
收藏
页码:1109 / 1114
页数:6
相关论文
共 27 条
[1]   Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter [J].
Adler, DC ;
Ko, TH ;
Fujimoto, JG .
OPTICS LETTERS, 2004, 29 (24) :2878-2880
[2]   Diabetic retinopathy - Seeing beyond glucose-induced microvascular disease [J].
Antonetti, David A. ;
Barber, Alistair J. ;
Bronson, Sarah K. ;
Freeman, Willard M. ;
Gardner, Thomas W. ;
Jefferson, Leonard S. ;
Kester, Mark ;
Kimball, Scot R. ;
Krady, J. Kyle ;
LaNoue, Kathryn F. ;
Norbury, Christopher C. ;
Quinn, Patrick G. ;
Sandirasegarane, Lakshman ;
Simpson, Ian A. .
DIABETES, 2006, 55 (09) :2401-2411
[3]  
Berezsky O, 2006, TCSET 2006: MODERN PROBLEMS OF RADIO ENGINEERING, TELECOMMUNICATIONS AND COMPUTER SCIENCE, PROCEEDINGS, P642
[4]   SPECKLE IN ULTRASOUND B-MODE SCANS [J].
BURCKHARDT, CB .
IEEE TRANSACTIONS ON SONICS AND ULTRASONICS, 1978, 25 (01) :1-6
[5]   Characterization of macular edema from various etiologies by optical coherence tomography [J].
Catier, A ;
Tadayoni, R ;
Paques, M ;
Erginay, A ;
Haouchine, B ;
Gaudric, A ;
Massin, P .
AMERICAN JOURNAL OF OPHTHALMOLOGY, 2005, 140 (02) :200-206
[6]   Improving image segmentation performance and quantitative analysis via a computer-aided grading methodology for optical coherence tomography retinal image analysis [J].
Debuc, Delia Cabrera ;
Salinas, Harry M. ;
Ranganathan, Sudarshan ;
Tatrai, Erika ;
Gao, Wei ;
Shen, Meixiao ;
Wang, Jianhua ;
Somfai, Gabor M. ;
Puliafito, Carmen A. .
JOURNAL OF BIOMEDICAL OPTICS, 2010, 15 (04)
[7]   Automated detection of retinal layer structures on optical coherence tomography images [J].
Fernández, DC ;
Salinas, HM ;
Puliafito, CA .
OPTICS EXPRESS, 2005, 13 (25) :10200-10216
[8]   Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search [J].
Garvin, Mona K. ;
Abramoff, Michael D. ;
Kardon, Randy ;
Russell, Stephen R. ;
Wu, Xiaodong ;
Sonka, Milan .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2008, 27 (10) :1495-1505
[9]   Automated 3-D Intraretinal Layer Segmentation of Macular Spectral-Domain Optical Coherence Tomography Images [J].
Garvin, Mona Kathryn ;
Abramoff, Michael David ;
Wu, Xiaodong ;
Russell, Stephen R. ;
Burns, Trudy L. ;
Sonka, Milan .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (09) :1436-1447
[10]  
Gonzalez R. C., 2004, Digital image processing using MATLAB, VSecond