Synthesis of NiO/carbon shell/single-walled carbon nanotube composites as anode materials for lithium ion batteries

被引:22
作者
Ma, Yufan [1 ,2 ]
Sheng, Leimei [1 ,2 ]
Zhao, Hongbin [3 ]
An, Kang [1 ,2 ]
Yu, Liming [1 ,2 ]
Xu, Jiaqiang [3 ]
Zhao, Xinluo [1 ,2 ]
机构
[1] Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Inst Low Dimens Carbons & Device Phys, Shanghai 200444, Peoples R China
[3] Shanghai Univ, Dept Chem, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
NiO; Carbon shells; Single-walled carbon nanotubes; Arc discharge method; Lithium ion batteries; NICKEL-OXIDE; GRAPHENE; SPECTROSCOPY; NANOSHEETS; GRAPHITE; STORAGE; SHELL;
D O I
10.1016/j.solidstatesciences.2015.05.014
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
In this study, NiO/carbon shell/single-walled carbon nanotube composites are prepared by heat treating the single-walled carbon nanotube samples synthesized by direct current arc discharge method. The morphology and nanostructure of the composites are affected by the heat treatment temperature according to the X-ray diffraction, Raman spectra and high-resolution transmission electron microscopy results. The electrochemical measurements are evaluated in coin-type cells versus metallic lithium. After heat treatment in H-2 at 600 degrees C for 1 h and in air at 300 degrees C for 10 h, the NiO nanoparticles encapsulated by carbon shells are evenly distributed on the surface of web-like single-walled carbon nanotubes and a perfect NiO/carbon shell/single-walled carbon nanotube nanostructure is formed. This NiO/carbon shell/single-walled carbon nanotube composite shows a high reversible specific capacity of 758 mA h g(-1) after 60 cycles at a current density of 100 mA g(-1) and an excellent rate capacity of about 594 mA h g(-1) even at a high current density of 1600 mA g(-1). Therefore, the NiO/carbon shell/single-walled carbon nanotube composites have significant potential for applications in energy storage devices. (C) 2015 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:49 / 55
页数:7
相关论文
共 26 条
[1]   Direct large-scale synthesis of 3D hierarchical mesoporous NiO microspheres as high-performance anode materials for lithium ion batteries [J].
Bai, Zhongchao ;
Ju, Zhicheng ;
Guo, Chunli ;
Qian, Yitai ;
Tang, Bin ;
Xiong, Shenglin .
NANOSCALE, 2014, 6 (06) :3268-3273
[2]   COBALT-CATALYZED GROWTH OF CARBON NANOTUBES WITH SINGLE-ATOMIC-LAYERWALLS [J].
BETHUNE, DS ;
KIANG, CH ;
DEVRIES, MS ;
GORMAN, G ;
SAVOY, R ;
VAZQUEZ, J ;
BEYERS, R .
NATURE, 1993, 363 (6430) :605-607
[3]   High rate capability of graphite negative electrodes for lithium-ion batteries [J].
Buqa, H ;
Goers, D ;
Holzapfel, M ;
Spahr, ME ;
Novák, P .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (02) :A474-A481
[4]   Size effect of nickel oxide for lithium ion battery anode [J].
Cheng, Ming-Yao ;
Ye, Yun-Sheng ;
Chiu, Tse-Ming ;
Pan, Chun-Jen ;
Hwang, Bing-Joe .
JOURNAL OF POWER SOURCES, 2014, 253 :27-34
[5]   Ultrafast Synthesis of Yolk-Shell and Cubic NiO Nanopowders and Application in Lithium Ion Batteries [J].
Choi, Seung Ho ;
Kang, Yun Chan .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (04) :2312-2316
[6]   Interface electrochemistry in conversion materials for Li-ion batteries [J].
Dalverny, A. -L. ;
Filhol, J. -S. ;
Doublet, M. -L. .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (27) :10134-10142
[7]  
Débart A, 2001, J ELECTROCHEM SOC, V148, pA1266, DOI 10.1149/1.1409971
[8]   VIBRATIONAL-MODES OF CARBON NANOTUBES - SPECTROSCOPY AND THEORY [J].
EKLUND, PC ;
HOLDEN, JM ;
JISHI, RA .
CARBON, 1995, 33 (07) :959-972
[9]   Interpretation of Raman spectra of disordered and amorphous carbon [J].
Ferrari, AC ;
Robertson, J .
PHYSICAL REVIEW B, 2000, 61 (20) :14095-14107
[10]   Enhanced rate capabilities of Co3O4/carbon nanotube anodes for lithium ion battery applications [J].
He, Xingfeng ;
Wu, Yang ;
Zhao, Fei ;
Wang, Jiaping ;
Jiang, Kaili ;
Fan, Shoushan .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (37) :11121-11125