FRET studies of the interaction of dimeric cyanine dyes with DNA

被引:28
|
作者
Laib, S [1 ]
Seeger, S [1 ]
机构
[1] Univ Zurich, Inst Phys Chem, CH-8057 Zurich, Switzerland
关键词
TOTO-1; TOTO-3; TOTO-DNA complex; FRET;
D O I
10.1023/B:JOFL.0000016290.34070.ee
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Fluorescence Resonance Energy Transfer (FRET) is a powerful tool to determine distances between chromophores bound to macromolecules, since the efficiency of the energy transfer from an initially excited donor to an acceptor strongly depends on the distance between the two dye molecules. The structure of the noncovalent complex of double-strand DNA (dsDNA) with thiazol orange dimers (TOTO) allows FRET analysis of two intercalated chromophores. By intercalation of two different TOTO dyes we observe an energy transfer from TOTO-1 as donor and TOTO-3 as acceptor. In this manner we are able to determine the mean distance between two proximate TOTO molecules bound to dsDNA. Thus the maximum number of binding positions for this type of intercalation dyes in the dsDNA can be obtained. Furthermore the dependency of the acceptor emission on the donor concentration is analysed. The emission of TOTO-3 reaches a maximum when the acceptor-to-donor ratio is 1:10.
引用
收藏
页码:187 / 191
页数:5
相关论文
共 50 条
  • [31] A novel FRET approach for in situ investigation of cellulase–cellulose interaction
    Liqun Wang
    Yiqing Wang
    Arthur J. Ragauskas
    Analytical and Bioanalytical Chemistry, 2010, 398 : 1257 - 1262
  • [32] Optoelectronics using DNA as a template for dyes
    Mamangun, Donna
    Navarathne, Daminda
    Sotzing, Gregory A.
    Lombardi, Jack P.
    Bartsch, Carrie M.
    Heckman, Emily M.
    Singh, Kristi M.
    Grote, James G.
    Nelson, Thomas R., Jr.
    NANOBIOSYSTEMS: PROCESSING, CHARACTERIZATION, AND APPLICATIONS V, 2012, 8464
  • [33] Dimeric Drug Polymeric Micelles with Acid-Active Tumor Targeting and FRET-Traceable Drug Release
    Guo, Xing
    Wang, Lin
    Duval, Kayla
    Fan, Jing
    Zhou, Shaobing
    Chen, Zi
    ADVANCED MATERIALS, 2018, 30 (03)
  • [34] Analytical potential of the quadruplex DNA-based FRET probes
    Juskowiak, Bernard
    ANALYTICA CHIMICA ACTA, 2006, 568 (1-2) : 171 - 180
  • [35] FRET from Multiple Pathways in Fluorophore-Labeled DNA
    Melinger, Joseph S.
    Khachatrian, Ani
    Ancona, Mario G.
    Buckhout-White, Susan
    Goldman, Ellen R.
    Spillmann, Christopher M.
    Medintz, Igor L.
    Cunningham, Paul D.
    ACS PHOTONICS, 2016, 3 (04): : 659 - 669
  • [36] Fluorescence tags using FRET networks and DNA structural change
    Ogura, Yusuke
    Hayashi, Keita
    Shimomura, Suguru
    Tanida, Jun
    BIOMEDICAL IMAGING AND SENSING CONFERENCE 2021, 2021, 11925
  • [37] A novel FRET approach for in situ investigation of cellulase-cellulose interaction
    Wang, Liqun
    Wang, Yiqing
    Ragauskas, Arthur J.
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2010, 398 (03) : 1257 - 1262
  • [38] Quantum dots as a FRET donor and nanoscaffold for multivalent DNA photonic wires
    Boeneman, Kelly
    Prasuhn, Duane E.
    Blanco-Canosa, Juan B.
    Dawson, Philip E.
    Melinger, Joseph S.
    Ancona, Mario
    Stewart, Michael H.
    Susumu, Kimihiro
    Huston, Alan
    Medintz, Igor L.
    COLLOIDAL QUANTUM DOTS/NANOCRYSTALS FOR BIOMEDICAL APPLICATIONS VI, 2011, 7909
  • [39] A simulation study on the influence of energy migration and relative interaction strengths of homo- and hetero-FRET on the net FRET efficiency
    Rout, Janmejaya
    Swain, Bikash Chandra
    Sakshi
    Biswas, Shrutidhara
    Das, Anand Kant
    Tripathy, Umakanta
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2020, 226
  • [40] Orientation of Cyanine Fluorophores Terminally Attached to DNA via Long, Flexible Tethers
    Ouellet, Jonathan
    Schorr, Stephanie
    Iqbal, Asif
    Wilson, Timothy J.
    Lilley, David M. J.
    BIOPHYSICAL JOURNAL, 2011, 101 (05) : 1148 - 1154