N solutions for a derivative nonlinear Schrodinger-type equation via Riemann-Hilbert approach

被引:3
作者
Geng, Xianguo [1 ]
Nie, Hui [1 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, 100 Kexue Rd, Zhengzhou 450001, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
derivative nonlinear Schrodinger-type equation; exact solutions; Riemann-Hilbert approach;
D O I
10.1002/mma.4693
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The inverse scattering transform for the derivative nonlinear Schrodinger-type equation is studied via the Riemann-Hilbert approach. In the direct scattering process, the spectral analysis of the Lax pair is performed, from which a Riemann-Hilbert problem is established for the derivative nonlinear Schrodinger-type equation. In the inverse scattering process, N-soliton solutions of the derivative nonlinear Schrodinger-type equation are obtained by solving Riemann-Hilbert problems corresponding to the reflectionless cases. Moreover, the dynamics of the exact solutions are discussed.
引用
收藏
页码:1653 / 1660
页数:8
相关论文
共 22 条
  • [1] Ablowitz M.J., 2003, Complex Variables
  • [2] Ablowitz M.J., 1991, Nonlinear Evolution Equations and Inverse Scattering
  • [3] BACKLUND-TRANSFORMATIONS RELATED TO THE KAUP NEWELL SPECTRAL PROBLEM
    BOITI, M
    LADDOMADA, C
    PEMPINELLI, F
    TU, GZ
    [J]. PHYSICA D, 1983, 9 (03): : 425 - 432
  • [4] PERTURBATION-THEORY FOR THE NEARLY INTEGRABLE NON-LINEAR EQUATIONS ASSOCIATED WITH A MODIFIED ZAKHAROV-SHABAT SCATTERING PROBLEM
    DODD, RK
    MORRIS, HC
    EAGLETON, J
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (04): : 1455 - 1465
  • [5] Geng XG, 2016, DERIVATIVE IN PRESS
  • [6] Riemann-Hilbert approach and N-soliton solutions for a generalized Sasa-Satsuma equation
    Geng, Xianguo
    Wu, Jianping
    [J]. WAVE MOTION, 2016, 60 : 62 - 72
  • [7] Explicit quasi-periodic solutions of the Kaup-Newell hierarchy
    Geng, Xianguo
    Li, Zhu
    Xue, Bo
    Guan, Liang
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 425 (02) : 1097 - 1112
  • [8] Algebro-geometric solutions of the coupled modified Korteweg-de Vries hierarchy
    Geng, Xianguo
    Zhai, Yunyun
    Dai, H. H.
    [J]. ADVANCES IN MATHEMATICS, 2014, 263 : 123 - 153
  • [9] An extension of integrable peakon equations with cubic nonlinearity
    Geng, Xianguo
    Xue, Bo
    [J]. NONLINEARITY, 2009, 22 (08) : 1847 - 1856
  • [10] Geometry of the Kaup-Newell equation
    Guha, P
    [J]. REPORTS ON MATHEMATICAL PHYSICS, 2002, 50 (01) : 1 - 12