QUANTUM COHOMOLOGY AND CLOSED-STRING MIRROR SYMMETRY FOR TORIC VARIETIES

被引:1
作者
Smith, Jack
机构
[1] St. John's College, Cambridge
基金
英国工程与自然科学研究理事会;
关键词
LAGRANGIAN FLOER THEORY; FUKAYA CATEGORY; QUOTIENTS; MANIFOLDS;
D O I
10.1093/qmathj/haz056
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a short new computation of the quantum cohomology of an arbitrary smooth (semiprojective) toric variety X, by showing directly that the Kodaira-Spencer map of Fukaya-Oh-Ohta-Ono defines an isomorphism onto a suitable Jacobian ring. In contrast to previous results of this kind, X need not be compact. The proof is based on the purely algebraic fact that a class of generalized Jacobian rings associated to X are free as modules over the Novikov ring. When X is monotone the presentation we obtain is completely explicit, using only well-known computations with the standard complex structure.
引用
收藏
页码:395 / 438
页数:44
相关论文
共 51 条
  • [11] Floer cohomology of the Chiang Lagrangian
    Evans, Jonathan David
    Lekili, Yanki
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2015, 21 (04): : 1361 - 1404
  • [12] Arnold conjecture and Gromov-Witten invariant
    Fukaya, K
    Ono, K
    [J]. TOPOLOGY, 1999, 38 (05) : 933 - 1048
  • [13] Fukaya K., 2016, Asterisque, V376
  • [14] Fukaya K, 2013, PURE APPL MATH Q, V9, P189
  • [15] Lagrangian Floer theory on compact toric manifolds II: bulk deformations
    Fukaya, Kenji
    Oh, Yong-Geun
    Ohta, Hiroshi
    Ono, Kaoru
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2011, 17 (03): : 609 - 711
  • [16] LAGRANGIAN FLOER THEORY ON COMPACT TORIC MANIFOLDS, I
    Fukaya, Kenji
    Oh, Yong-Geun
    Ohta, Hiroshi
    Ono, Kaoru
    [J]. DUKE MATHEMATICAL JOURNAL, 2010, 151 (01) : 23 - 174
  • [17] Fukaya Kenji, 2009, AMS IP STUDIES ADV 2, V46
  • [18] Givental AB, 1995, PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOLS 1 AND 2, P472
  • [19] González E, 2017, TOHOKU MATH J, V69, P327
  • [20] Seidel elements and mirror transformations
    Gonzalez, Eduardo
    Iritani, Hiroshi
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2012, 18 (03): : 557 - 590