QUANTUM COHOMOLOGY AND CLOSED-STRING MIRROR SYMMETRY FOR TORIC VARIETIES

被引:1
作者
Smith, Jack
机构
[1] St. John's College, Cambridge
基金
英国工程与自然科学研究理事会;
关键词
LAGRANGIAN FLOER THEORY; FUKAYA CATEGORY; QUOTIENTS; MANIFOLDS;
D O I
10.1093/qmathj/haz056
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a short new computation of the quantum cohomology of an arbitrary smooth (semiprojective) toric variety X, by showing directly that the Kodaira-Spencer map of Fukaya-Oh-Ohta-Ono defines an isomorphism onto a suitable Jacobian ring. In contrast to previous results of this kind, X need not be compact. The proof is based on the purely algebraic fact that a class of generalized Jacobian rings associated to X are free as modules over the Novikov ring. When X is monotone the presentation we obtain is completely explicit, using only well-known computations with the standard complex structure.
引用
收藏
页码:395 / 438
页数:44
相关论文
共 51 条
  • [1] [Anonymous], 1998, Progr. Math., V160, P141, DOI [10.1007/978-1-4612-0705-45, DOI 10.1007/978-1-4612-0705-45]
  • [2] Auroux Denis, 2007, J. Gokova Geom. Topol. GGT, V1, P51
  • [3] BATYREV VV, 1993, ASTERISQUE, P9
  • [4] Lagrangian topology and enumerative geometry
    Biran, Paul
    Cornea, Octav
    [J]. GEOMETRY & TOPOLOGY, 2012, 16 (02) : 963 - 1052
  • [5] Caldararu A, 2013, NEW YORK J MATH, V19, P305
  • [6] OPEN GROMOV-WITTEN INVARIANTS, MIRROR MAPS, AND SEIDEL REPRESENTATIONS FOR TORIC MANIFOLDS
    Chan, Kwokwai
    Lau, Siu-Cheong
    Leung, Naichung Conan
    Tseng, Hsian-Hua
    [J]. DUKE MATHEMATICAL JOURNAL, 2017, 166 (08) : 1405 - 1462
  • [7] Cho CH, 2006, ASIAN J MATH, V10, P773
  • [8] Wall crossing for symplectic vortices and quantum cohomology
    Cieliebak, K
    Salamon, D
    [J]. MATHEMATISCHE ANNALEN, 2006, 335 (01) : 133 - 192
  • [9] COMPACT GENERATORS IN CATEGORIES OF MATRIX FACTORIZATIONS
    Dyckerhoff, Tobias
    [J]. DUKE MATHEMATICAL JOURNAL, 2011, 159 (02) : 223 - 274
  • [10] Eisenbud D., 1995, GRADUATE TEXTS MATH, V150, DOI 10.1007/978-1-4612-5350-1