Subcritical bifurcation in spatially extended systems

被引:5
作者
E, Weinan [1 ,2 ]
Zhou, Xiang [3 ]
Cheng, Xiuyuan [2 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[2] Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
[3] Brown Univ, Div Appl Math, Providence, RI 02912 USA
关键词
REACTION-DIFFUSION SYSTEM; THERMALLY-INDUCED ESCAPE; EQUATION; DYNAMICS; ENERGY; NOISE;
D O I
10.1088/0951-7715/25/3/761
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A theory for noise-driven subcritical instabilities in spatially extended systems is put forward. The theory allows one to calculate the critical bifurcation parameter for a first-order phase transition in such non-equilibrium systems in the thermodynamic limit and analyse the mechanism of phase transition. Two examples with distinctive features are studied in detail to demonstrate the usefulness of the theory and the different scenarios that can occur in the thermodynamic limit of non-equilibrium systems.
引用
收藏
页码:761 / 779
页数:19
相关论文
共 29 条
[1]  
[Anonymous], 1984, CBMSNSF REGIONAL C S
[2]  
[Anonymous], 2009, THESIS
[3]  
[Anonymous], 1989, NOISE NON D
[4]  
[Anonymous], NONLINEARITY
[5]  
Drazin P., 1981, HYDRODYNAMIC STABILI
[6]   Turbulence transition in pipe flow [J].
Eckhardt, Bruno ;
Schneider, Tobias M. ;
Hof, Bjorn ;
Westerweel, Jerry .
ANNUAL REVIEW OF FLUID MECHANICS, 2007, 39 (447-468) :447-468
[7]   Dynamics of front solutions in a specific reaction-diffusion system in one dimension [J].
Ei, Shin-Ichiro ;
Ikeda, Hideo ;
Kawana, Takeyuki .
JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2008, 25 (01) :117-147
[8]   LARGE FLUCTUATIONS FOR A NON-LINEAR HEAT-EQUATION WITH NOISE [J].
FARIS, WG ;
JONALASINIO, G .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (10) :3025-3055
[9]   PATTERN FORMATION IN REACTING AND DIFFUSING SYSTEMS [J].
FIFE, PC .
JOURNAL OF CHEMICAL PHYSICS, 1976, 64 (02) :554-564
[10]  
Freidlin MI, 2012, Random Perturbations of Dynamical Systems