Unsupervised machine learning approaches to the q-state Potts model

被引:6
作者
Tirelli, Andrea [1 ]
Carvalho, Danyella O. [2 ]
Oliveira, Lucas A. [2 ,3 ]
de Lima, Jose P. [2 ]
Costa, Natanael C. [1 ,3 ]
dos Santos, Raimundo R. [3 ]
机构
[1] Int Sch Adv Studies SISSA, Via Bonomea 265, I-34136 Trieste, Italy
[2] Univ Fed Piaui, Dept Fis, BR-64049550 Teresina, PI, Brazil
[3] Univ Fed Rio de Janeiro, Inst Fis, CxP 68-528, BR-21941972 Rio De Janeiro, RJ, Brazil
关键词
K-means clustering - Learning algorithms - Machine learning - Potts model - Topology;
D O I
10.1140/epjb/s10051-022-00453-3
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
In this paper, we study phase transitions of the q-state Potts model through a number of unsupervised machine learning techniques, namely Principal Component Analysis (PCA), k-means clustering, Uniform Manifold Approximation and Projection (UMAP), and Topological Data Analysis (TDA). Even though in all cases we are able to retrieve the correct critical temperatures T-c(q), for q = 3,4 and 5, results show that non-linear methods as UMAP and TDA are less dependent on finite-size effects. This study may be considered as a benchmark for the use of different unsupervised machine learning algorithms in the investigation of phase transitions.
引用
收藏
页数:12
相关论文
共 72 条
[21]   FINITE-SIZE RESCALING TRANSFORMATIONS [J].
DOSSANTOS, RR ;
SNEDDON, L .
PHYSICAL REVIEW B, 1981, 23 (07) :3541-3546
[22]   v Machine learning & artificial intelligence in the quantum domain: a review of recent progress [J].
Dunjko, Vedran ;
Briegel, Hans J. .
REPORTS ON PROGRESS IN PHYSICS, 2018, 81 (07)
[23]  
EDELSBRUNNER H., 2010, Computational Topology: An Introduction, DOI DOI 10.1090/MBK/069
[24]   Spatial applications of topological data analysis: Cities, snowflakes, random structures, and spiders spinning under the influence [J].
Feng, Michelle ;
Porter, Mason A. .
PHYSICAL REVIEW RESEARCH, 2020, 2 (03)
[25]  
Fisher M. E., 1971, Proceedings of the Enrico Fermi International School of Physics, V51
[26]   SCALING FOR 1ST-ORDER PHASE-TRANSITIONS IN THERMODYNAMIC AND FINITE SYSTEMS [J].
FISHER, ME ;
BERKER, AN .
PHYSICAL REVIEW B, 1982, 26 (05) :2507-2513
[27]   Can a CNN trained on the Ising model detect the phase transition of the q-state Potts model? [J].
Fukushima, Kimihiko ;
Sakai, Kazumitsu .
PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2021, 2021 (06)
[28]   Neural network flows of low q-state Potts and clock models [J].
Giataganas, Dimitrios ;
Huang, Ching-Yu ;
Lin, Feng-Li .
NEW JOURNAL OF PHYSICS, 2022, 24 (04)
[29]  
Gubernatis J., 2016, Quantum Monte Carlo Methods: Algorithms for Lattice Models
[30]  
Hartigan J. A., 1979, Applied Statistics, V28, P100, DOI 10.2307/2346830