Unsupervised machine learning approaches to the q-state Potts model

被引:6
作者
Tirelli, Andrea [1 ]
Carvalho, Danyella O. [2 ]
Oliveira, Lucas A. [2 ,3 ]
de Lima, Jose P. [2 ]
Costa, Natanael C. [1 ,3 ]
dos Santos, Raimundo R. [3 ]
机构
[1] Int Sch Adv Studies SISSA, Via Bonomea 265, I-34136 Trieste, Italy
[2] Univ Fed Piaui, Dept Fis, BR-64049550 Teresina, PI, Brazil
[3] Univ Fed Rio de Janeiro, Inst Fis, CxP 68-528, BR-21941972 Rio De Janeiro, RJ, Brazil
关键词
K-means clustering - Learning algorithms - Machine learning - Potts model - Topology;
D O I
10.1140/epjb/s10051-022-00453-3
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
In this paper, we study phase transitions of the q-state Potts model through a number of unsupervised machine learning techniques, namely Principal Component Analysis (PCA), k-means clustering, Uniform Manifold Approximation and Projection (UMAP), and Topological Data Analysis (TDA). Even though in all cases we are able to retrieve the correct critical temperatures T-c(q), for q = 3,4 and 5, results show that non-linear methods as UMAP and TDA are less dependent on finite-size effects. This study may be considered as a benchmark for the use of different unsupervised machine learning algorithms in the investigation of phase transitions.
引用
收藏
页数:12
相关论文
共 72 条
[1]   Principal component analysis [J].
Abdi, Herve ;
Williams, Lynne J. .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2010, 2 (04) :433-459
[2]   Phase diagram study of a two-dimensional frustrated antiferromagnet via unsupervised machine learning [J].
Acevedo, S. ;
Arlego, M. ;
Lamas, C. A. .
PHYSICAL REVIEW B, 2021, 103 (13)
[3]   Deep Learning: Current and Emerging Applications in Medicine and Technology [J].
Akay, Altug ;
Hess, Henry .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2019, 23 (03) :906-920
[4]  
Alexandrou Constantia, 2020, Eur. Phys. J. B, V93, P1
[5]  
Angra S, 2017, PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON BIG DATA ANALYTICS AND COMPUTATIONAL INTELLIGENCE (ICBDAC), P57, DOI 10.1109/ICBDACI.2017.8070809
[6]  
[Anonymous], 1983, Phase transitions and critical phenomena
[7]  
Becca F, 2017, QUANTUM MONTE CARLO APPROACHES FOR CORRELATED SYSTEMS, P1, DOI 10.1017/9781316417041
[8]   CRITICAL PROPERTIES FROM MONTE-CARLO COARSE GRAINING AND RENORMALIZATION [J].
BINDER, K .
PHYSICAL REVIEW LETTERS, 1981, 47 (09) :693-696
[9]   FINITE SIZE SCALING ANALYSIS OF ISING-MODEL BLOCK DISTRIBUTION-FUNCTIONS [J].
BINDER, K .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1981, 43 (02) :119-140
[10]   Machine learning and the physical sciences [J].
Carleo, Giuseppe ;
Cirac, Ignacio ;
Cranmer, Kyle ;
Daudet, Laurent ;
Schuld, Maria ;
Tishby, Naftali ;
Vogt-Maranto, Leslie ;
Zdeborova, Lenka .
REVIEWS OF MODERN PHYSICS, 2019, 91 (04)