Large time periodic solutions to coupled chemotaxis-fluid models

被引:26
作者
Jin, Chunhua [1 ]
机构
[1] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2017年 / 68卷 / 06期
关键词
Chemotaxis-Navier-Stokes system; Chemotaxis-Stokes system; Large periodic solution; Classical solution; SEGEL-STOKES MODEL; BLOW-UP; GLOBAL EXISTENCE; NONLINEAR DIFFUSION; SYSTEM; BOUNDEDNESS; BEHAVIOR; AGGREGATION;
D O I
10.1007/s00033-017-0882-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we deal with the time periodic problem to coupled chemotaxis-fluid models. We prove the existence of large time periodic strong solutions for the full chemotaxis-Navier-Stokes system in spatial dimension N = 2, and the existence of large time periodic strong solutions for the chemotaxis-Stokes system in spatial dimension N = 3. On the basis of these, the regularity of the solutions can be further improved. More precisely speaking, if the time periodic source g and the potential force del phi belong to C-alpha, alpha/2 ((Omega) over bar x R), the solutions we obtained are also classical solutions.
引用
收藏
页数:24
相关论文
共 41 条
[1]   On Stokes operators with variable viscosity in bounded and unbounded domains [J].
Abels, Helmut ;
Terasawa, Yutaka .
MATHEMATISCHE ANNALEN, 2009, 344 (02) :381-429
[2]  
Blanchet A, 2006, ELECTRON J DIFFER EQ
[3]   Sinking, merging and stationary plumes in a coupled chemotaxis-fluid model: a high-resolution numerical approach [J].
Chertock, A. ;
Fellner, K. ;
Kurganov, A. ;
Lorz, A. ;
Markowich, P. A. .
JOURNAL OF FLUID MECHANICS, 2012, 694 :155-190
[4]   Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions [J].
Cieslak, Tomasz ;
Stinner, Christian .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (10) :5832-5851
[5]  
Corrias L., 2004, Milan J. Math., V72, P1, DOI DOI 10.1007/s00032-003-0026-x
[6]   CHEMOTAXIS-FLUID COUPLED MODEL FOR SWIMMING BACTERIA WITH NONLINEAR DIFFUSION: GLOBAL EXISTENCE AND ASYMPTOTIC BEHAVIOR [J].
Di Francesco, Marco ;
Lorz, Alexander ;
Markowich, Peter A. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 28 (04) :1437-1453
[7]   Optimal critical mass in the two dimensional Keller-Segel model in R2 [J].
Dolbeault, J ;
Perthame, B .
COMPTES RENDUS MATHEMATIQUE, 2004, 339 (09) :611-616
[8]   Global Solutions to the Coupled Chemotaxis-Fluid Equations [J].
Duan, Renjun ;
Lorz, Alexander ;
Markowich, Peter .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2010, 35 (09) :1635-1673
[9]   Reaction terms avoiding aggregation in slow fluids [J].
Espejo, Elio ;
Suzuki, Takashi .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2015, 21 :110-126
[10]  
Farwig R., 2010, Ann. Univ. Ferrara, V56, P249, DOI DOI 10.1007/S11565-010-0108-Y