Global existence and blowup of solutions to a chemotaxis system

被引:55
作者
Nagai, T [1 ]
机构
[1] Hiroshima Univ, Dept Math, Grad Sch Sci, Higashihiroshima 7398526, Japan
关键词
parabolic system; blowup; global existence; decay properties; chemotaxis;
D O I
10.1016/S0362-546X(01)00222-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a nonlinear parabolic system modeling chemotaxis in two-dimensional domains. The blowup behavior of solutions at isolated blowup points is mentioned. Next, we discuss the global existence of solutions in time to the Cauchy problem of the system on R-2 and decay properties of bounded solutions as time goes to infinity.
引用
收藏
页码:777 / 787
页数:11
相关论文
共 19 条
[1]  
Biler P., 1998, Adv. Math. Sci. Appl., V8, P715
[2]   NON-LINEAR ASPECTS OF CHEMOTAXIS [J].
CHILDRESS, S ;
PERCUS, JK .
MATHEMATICAL BIOSCIENCES, 1981, 56 (3-4) :217-237
[3]  
Childress S., 1984, Modelling of Patterns in Space and Time, P61
[4]   Symmetrization techniques on unbounded domains:: Application to a chemotaxis system on RN [J].
Diaz, JI ;
Nagai, T ;
Rakotoson, JM .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 145 (01) :156-183
[5]   Global behaviour of a reaction-diffusion system modelling chemotaxis [J].
Gajewski, H ;
Zacharias, K .
MATHEMATISCHE NACHRICHTEN, 1998, 195 :77-114
[6]  
Henry D., 1981, LECT NOTE MATH, V840
[7]  
Herrero M. A., 1998, Ann. Scuola Norm. Sup. Pisa Cl. Sci., V24, P633
[8]   Singularity patterns in a chemotaxis model [J].
Herrero, MA ;
Velazquez, JJL .
MATHEMATISCHE ANNALEN, 1996, 306 (03) :583-623
[9]   Chemotactic collapse for the Keller-Segel model [J].
Herrero, MA ;
Velazquez, JJL .
JOURNAL OF MATHEMATICAL BIOLOGY, 1996, 35 (02) :177-194
[10]   Finite-time aggregation into a single point in a reaction-diffusion system [J].
Herrero, MA ;
Medina, E ;
Velazquez, JJL .
NONLINEARITY, 1997, 10 (06) :1739-1754