We have recently reported that the activated serine protease and blood coagulation Factor VII (FVIIa) can induce Ca2+ oscillations in Madin-Darby canine kidney cells. We now demonstrate a similar response by Madin-Darby canine kidney cells to the active coagulation Factor X (FXa), which is also a serine protease and a substrate of the tissue factor (TF)-FVIIa complex in the initiation of the coagulation cascade. The phosphatidyl inositol-specific phospholipase C inhibitor U73122 inhibited the signals elicited by both FVIIa and FXa. Lack of sensibility to the tyrosine kinase inhibitors herbimycin A, genistein, and the tyrphostin AG18 and discordance between TF expression and FVIIa responsiveness argued against TF acting as a cytokine-like receptor, with tyrosine kinase-mediated activation by FVIIa. As demonstrated using the protease inhibitor benzamidine and by specific active site inhibition with 1,5-dansyl-Glu-Gly-Arg chloromethyl ketone, both FVIIa and FXa lost their ability to elicit a calcium response when devoid of their proteolytic activity. Consistent with this, the native (zymogen) form of Factor X did not induce Ca2+ transients. Homologous but not heterologous inhibition of FVIIa- and FXa-evoked Ca2+ signals by 1,5-dansyl-Glu-Gly-Arg chloromethyl ketone-inactivated FVIIa and FXa suggested that each factor had its own specific cell surface anchoring receptor. The two coagulation factors did not show homologous desensitization as seen for thrombin stimulation. Studies with hirudin excluded involvement of the established activation pathway through thrombin itself. Lack of desensitization of the response to FVIIa or FXa by thrombin ruled out any involvement of proteinase activated receptor-1 (PAR-1), the thrombin receptor. We speculate that FXa and FVIIa may work via a receptor (possibly common) analogous to PAR-I or its functional homologue PAR-2. Although TF is essential for the FVIIa-induced signaling event; its role in the phosphatidyl inositol-specific phospholipase C-mediated Ca2+ signal may be in anchoring FVIIa to the cell surface rather than in transmembrane signal mediation.