Differences in Water Sorption and Proton Conductivity Between Nafion and SPEEK

被引:119
作者
Wu, Xuemei [2 ]
Wang, Xiaowen [3 ]
He, Gaohong [2 ]
Benziger, Jay [1 ]
机构
[1] Princeton Univ, Dept Chem & Biol Engn, Princeton, NJ 08544 USA
[2] Dalian Univ Technol, State Key Lab Fine Chem & Dev, Ctr Membrane Sci & Technol, Dalian, Peoples R China
[3] Wuhan Univ Technol, State Key Lab Adv Technol & Mat Synth & Proc, Wuhan, Peoples R China
关键词
conducting polymers; conductive network; ionomers; membranes; microstructure; poly(ether ketones); swelling; POLY(ETHER ETHER KETONE); X-RAY-SCATTERING; FUEL-CELL PERFORMANCE; MECHANICAL-PROPERTIES; COMPOSITE MEMBRANES; PHYSICAL-PROPERTIES; IONOMER MEMBRANES; SULFONATED PEEK; WIDE-ANGLE; ELECTROLYTE;
D O I
10.1002/polb.22326
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Water sorption, volumetric expansion, and proton conductivity of 1100 EW Nafion and 555 EW sulfonated polyetheretherketone (SPEEK) were compared as functions of water activity at 60 and 80 degrees C. Water sorption in Nafion occurs with a small positive volume of mixing, similar to 0.005 cm(3)/cm(3). In contrast, water sorption in SPEEK has a large negative volume of mixing similar to-0.05 cm(3)/cm(3). The percolation thresholds for proton conduction occur at hydrophilic volume fractions of 0.10 in Nafion and 0.30 in SPEEK. Proton conductivity increases quadratically with hydrophilic volume fraction above the percolation threshold. The different percolation thresholds suggest the hydrophilic domains in Nafion grow from lamella, whereas the hydrophilic domains in SPEEK grow from spheres. (C) 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1437-1445, 2011
引用
收藏
页码:1437 / 1445
页数:9
相关论文
共 70 条
[1]   Polymeric proton conducting membranes for medium temperature fuel cells (110-160°C) [J].
Alberti, G ;
Casciola, M ;
Massinelli, L ;
Bauer, B .
JOURNAL OF MEMBRANE SCIENCE, 2001, 185 (01) :73-81
[2]  
Aneli J, 2009, OXID COMMUN, V32, P593
[3]   Influence of temperature and humidity on the mechanical properties of Nafion® 117 polymer electrolyte membrane [J].
Bauer, F ;
Denneler, S ;
Willert-Porada, M .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2005, 43 (07) :786-795
[4]   MECHANICAL, THERMAL, AND ELECTRICAL-PROPERTIES OF METAL FIBER-FILLED POLYMER COMPOSITES [J].
BIGG, DM .
POLYMER ENGINEERING AND SCIENCE, 1979, 19 (16) :1188-1192
[5]   Thermodynamics and proton transport in Nafion - II. Proton diffusion mechanisms and conductivity [J].
Choi, P ;
Jalani, NH ;
Datta, R .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (03) :E123-E130
[6]   Sorption in proton-exchange membranes - An explanation of Schroeder's paradox [J].
Choi, PH ;
Datta, R .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (12) :E601-E607
[7]   Consideration of thermodynamic, transport, and mechanical properties in the design of polymer electrolyte membranes for higher temperature fuel cell operation [J].
Choi, Pyoungho ;
Jalani, Nikhil H. ;
Thampan, Tony M. ;
Datta, Ravindra .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2006, 44 (16) :2183-2200
[8]   Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000 Part II. Engineering, technology development and application aspects [J].
Costamagna, P ;
Srinivasan, S .
JOURNAL OF POWER SOURCES, 2001, 102 (1-2) :253-269
[9]   Proton Conducting Hybrid Membranes Based on Aromatic Polymers Blends for Direct Methanol Fuel Cell Applications [J].
de Bonis, C. ;
D'Epifanio, A. ;
Di Vona, M. L. ;
D'Ottavi, C. ;
Mecheri, B. ;
Traversa, E. ;
Trombetta, M. ;
Licoccia, S. .
FUEL CELLS, 2009, 9 (04) :387-393
[10]   Proton channels [J].
Diat, Olivier ;
Gebel, Gerard .
NATURE MATERIALS, 2008, 7 (01) :13-14