Preparation and Characteristics of Wet-Spun Filament Made of Cellulose Nanofibrils with Different Chemical Compositions

被引:10
作者
Park, Chan-Woo [1 ]
Park, Ji-Soo [1 ]
Han, Song-Yi [1 ]
Lee, Eun-Ah [1 ]
Kwon, Gu-Joong [2 ]
Seo, Young-Ho [3 ]
Gwon, Jae-Gyoung [4 ]
Lee, Sun-Young [4 ]
Lee, Seung-Hwan [1 ]
机构
[1] Kangwon Natl Univ, Coll Forest & Environm Sci, Chunchon 24341, South Korea
[2] Kangwon Natl Univ, Kangwon Inst Inclus Technol, Chunchon 24341, South Korea
[3] Kangwon Natl Univ, Dept Adv Mech Engn, Chunchon 24341, South Korea
[4] Natl Inst Forest Sci, Seoul 02455, South Korea
基金
新加坡国家研究基金会;
关键词
cellulose nanofibril; wet-spun fiber; filament; ENZYMATIC-HYDROLYSIS; FIBERS; HEMICELLULOSE; STRENGTH; NMMO;
D O I
10.3390/polym12040949
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
In this study, wet-spun filaments were prepared using lignocellulose nanofibril (LCNF), with 6.0% and 13.0% of hemicellulose and lignin, respectively, holocellulose nanofibril (HCNF), with 37% hemicellulose, and nearly purified-cellulose nanofibril (NP-CNF) through wet-disk milling followed by high-pressure homogenization. The diameter was observed to increase in the order of NP-CNF <= HCNF < LCNF. The removal of lignin improved the defibrillation efficiency, thus increasing the specific surface area and filtration time. All samples showed the typical X-ray diffraction pattern of cellulose I. The orientation of CNFs in the wet-spun filaments was observed to increase at a low concentration of CNF suspensions and high spinning rate. The increase in the CNF orientation improved the tensile strength and elastic modulus of the wet-spun filaments. The tensile strength of the wet-spun filaments decreased in the order of HCNF > NP-CNF > LCNF.
引用
收藏
页数:11
相关论文
共 28 条
[1]   Electrospun cellulose Nano fibril reinforced PLA/PBS composite scaffold for vascular tissue engineering [J].
Abudula, Tuerdimaimaiti ;
Saeed, Usman ;
Memic, Adnan ;
Gauthaman, Kalamegam ;
Hussain, Mohammad Asif ;
Al-Turaif, Hamad .
JOURNAL OF POLYMER RESEARCH, 2019, 26 (05)
[2]   Optimization of high pressure homogenization parameters for the isolation of cellulosic nanofibers using response surface methodology [J].
Davoudpour, Yalda ;
Hossain, Sohrab ;
Khalil, H. P. S. Abdul ;
Haafiz, M. K. Mohamad ;
Ishak, Z. A. Mohd ;
Hassan, Azman ;
Sarker, Zaidul Islam .
INDUSTRIAL CROPS AND PRODUCTS, 2015, 74 :381-387
[3]   TEMPO-oxidized cellulose nanofibril/poly(vinyl alcohol) composite drawn fibers [J].
Endo, Ryokei ;
Saito, Tsuguyuki ;
Isogai, Akira .
POLYMER, 2013, 54 (02) :935-941
[4]   Holocellulose Nanofibers of High Molar Mass and Small Diameter for High-Strength Nanopaper [J].
Galland, Sylvain ;
Berthold, Fredrik ;
Prakobna, Kasinee ;
Berglund, Lars A. .
BIOMACROMOLECULES, 2015, 16 (08) :2427-2435
[5]   Structure and Mechanical Properties of Wet-Spun Fibers Made from Natural Cellulose Nanofibers [J].
Iwamoto, Shinichiro ;
Isogai, Akira ;
Iwata, Tadahisa .
BIOMACROMOLECULES, 2011, 12 (03) :831-836
[6]   Cellulose long fibers fabricated from cellulose nanofibers and its strong and tough characteristics [J].
Kafy, Abdullahil ;
Kim, Hyun Chan ;
Zhai, Lindong ;
Kim, Jung Woong ;
Van Hai, Le ;
Kang, Tae June ;
Kim, Jaehwan .
SCIENTIFIC REPORTS, 2017, 7
[7]   Evaluation of the effect of hot-compressed water treatment on enzymatic hydrolysis of lignocellulosic nanofibrils with different lignin content using a quartz crystal microbalance [J].
Kumagai, Akio ;
Lee, Seung-Hwan ;
Endo, Takashi .
BIOTECHNOLOGY AND BIOENGINEERING, 2016, 113 (07) :1441-1447
[8]   Increase in enzyme accessibility by generation of nanospace in cell wall supramolecular structure [J].
Lee, Seung-Hwan ;
Chang, Fuxiang ;
Inoue, Seiichi ;
Endo, Takashi .
BIORESOURCE TECHNOLOGY, 2010, 101 (19) :7218-7223
[9]  
Lee SeungHwan Lee SeungHwan, 2019, Journal of Forest and Environmental Science, V35, P141
[10]   A pilot study on lignocelluloses to ethanol and fish feed using NMMO pretreatment and cultivation with zygomycetes in an air-lift reactor [J].
Lennartsson, Patrik R. ;
Niklasson, Claes ;
Taherzadeh, Mohammad J. .
BIORESOURCE TECHNOLOGY, 2011, 102 (06) :4425-4432