Nomogram to predict the risk of septic acute kidney injury in the first 24 h of admission: an analysis of intensive care unit data

被引:31
作者
Deng, Fuxing [1 ,2 ]
Peng, Milin [1 ,2 ]
Li, Jing [1 ,2 ]
Chen, Yana [1 ,2 ]
Zhang, Buyao [1 ,2 ]
Zhao, Shuangping [1 ,2 ]
机构
[1] Cent South Univ, Xiangya Hosp, Dept Crit Care Med, Changsha, Hunan, Peoples R China
[2] Cent South Univ, Xiangya Hosp, Natl Clin Res Ctr Geriatr Disorders, Changsha, Hunan, Peoples R China
关键词
Prediction; sepsis; acute kidney injury; MIMIC III; nomogram; CRITICALLY-ILL PATIENTS; ACUTE-RENAL-FAILURE; NEPHROLOGY CONSULTATION; SCORE; MORTALITY; SEPSIS; MODEL; AKI;
D O I
10.1080/0886022X.2020.1761832
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Background: Acute kidney injury (AKI) is a significant cause of morbidity and mortality, especially in sepsis patients. Early prediction of AKI can help physicians determine the appropriate intervention, and thus, improve the outcome. This study aimed to develop a nomogram to predict the risk of AKI in sepsis patients (S-AKI) in the initial 24 h following admission. Methods: Sepsis patients with AKI who met the Sepsis 3.0 criteria and Kidney Disease: Improving Global Outcomes criteria in the Massachusetts Institute of Technology critical care database, Medical Information Mart for Intensive Care (MIMIC-III), were identified for analysis. Data were analyzed using multiple logistic regression, and the performance of the proposed nomogram was evaluated based on Harrell's concordance index (C-index) and the area under the receiver operating characteristic curve. Results: We included 2917 patients in the analysis; 1167 of 2042 patients (57.14%) and 469 of 875 patients (53.6%) had AKI in the training and validation cohorts, respectively. The predictive factors identified by multivariate logistic regression were blood urea nitrogen level, infusion volume, lactate level, weight, blood chloride level, body temperature, and age. With the incorporation of these factors, our model had well-fitted calibration curves and achieved good C-indexes of 0.80 [95% confidence interval (CI): 0.78-0.82] and 0.79 (95% CI: 0.76-0.82) in predicting S-AKI in the training and validation cohorts, respectively. Conclusion: The proposed nomogram effectively predicted AKI risk in sepsis patients admitted to the intensive care unit in the first 24 h.
引用
收藏
页码:428 / 436
页数:9
相关论文
共 33 条
[1]  
[Anonymous], 2012, Kidney Int Suppl (2011), V2, P163
[2]   Septic acute kidney injury in critically ill patients: Clinical characteristics and outcomes [J].
Bagshaw, Sean M. ;
Uchino, Shigehiko ;
Bellomo, Rinaldo ;
Morimatsu, Hiroshi ;
Morgera, Stanislao ;
Schetz, Miet ;
Tan, Ian ;
Bouman, Catherine ;
Macedo, Ettiene ;
Gibney, Noel ;
Tolwani, Ashita ;
Oudemans-van Straaten, Heleen M. ;
Ronco, Claudio ;
Kellum, John A. .
CLINICAL JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2007, 2 (03) :431-439
[3]   MMP9 and SCF Protect from Apoptosis in Acute Kidney Injury [J].
Bengatta, Soraya ;
Arnould, Catherine ;
Letavernier, Emmanuel ;
Monge, Matthieu ;
de Preneuf, Helene Martinan ;
Werb, Zena ;
Ronco, Pierre ;
Lelongt, Brigitte .
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2009, 20 (04) :787-797
[4]   A Prospective International Multicenter Study of AKI in the Intensive Care Unit [J].
Bouchard, Josee ;
Acharya, Anjali ;
Cerda, Jorge ;
Maccariello, Elizabeth R. ;
Madarasu, Rajasekara Chakravarthi ;
Tolwani, Ashita J. ;
Liang, Xinling ;
Fu, Ping ;
Liu, Zhi-Hong ;
Mehta, Ravindra L. .
CLINICAL JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2015, 10 (08) :1324-1331
[5]   Epidemiology of Acute Kidney Injury in the Intensive Care Unit [J].
Case, James ;
Khan, Supriya ;
Khalid, Raeesa ;
Khan, Akram .
CRITICAL CARE RESEARCH AND PRACTICE, 2013, 2013
[6]   Acute kidney injury, mortality, length of stay, and costs in hospitalized patients [J].
Chertow, GM ;
Burdick, E ;
Honour, M ;
Bonventre, JV ;
Bates, DW .
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2005, 16 (11) :3365-3370
[7]   Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD): The TRIPOD Statement [J].
Collins, Gary S. ;
Reitsma, Johannes B. ;
Altman, Douglas G. ;
Moons, Karel G. M. .
EUROPEAN UROLOGY, 2015, 67 (06) :1142-1151
[8]   Acute kidney injury following severe trauma: Risk factors and long-term outcome [J].
Eriksson, Mikael ;
Brattstrom, Olof ;
Martensson, Johan ;
Larsson, Emma ;
Oldner, Anders .
JOURNAL OF TRAUMA AND ACUTE CARE SURGERY, 2015, 79 (03) :407-412
[9]   Severe hyperlactatemia, lactate clearance and mortality in unselected critically ill patients [J].
Haas, Sebastian A. ;
Lange, Theresa ;
Saugel, Bernd ;
Petzoldt, Martin ;
Fuhrmann, Valentin ;
Metschke, Maria ;
Kluge, Stefan .
INTENSIVE CARE MEDICINE, 2016, 42 (02) :202-210
[10]   Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study [J].
Hoste, Eric A. J. ;
Bagshaw, Sean M. ;
Bellomo, Rinaldo ;
Cely, Cynthia M. ;
Colman, Roos ;
Cruz, Dinna N. ;
Edipidis, Kyriakos ;
Forni, Lui G. ;
Gomersall, Charles D. ;
Govil, Deepak ;
Honore, Patrick M. ;
Joannes-Boyau, Olivier ;
Joannidis, Michael ;
Korhonen, Anna-Maija ;
Lavrentieva, Athina ;
Mehta, Ravindra L. ;
Palevsky, Paul ;
Roessler, Eric ;
Ronco, Claudio ;
Uchino, Shigehiko ;
Vazquez, Jorge A. ;
Vidal Andrade, Erick ;
Webb, Steve ;
Kellum, John A. .
INTENSIVE CARE MEDICINE, 2015, 41 (08) :1411-1423