WELL-BALANCED SECOND-ORDER APPROXIMATION OF THE SHALLOW WATER EQUATION WITH CONTINUOUS FINITE ELEMENTS

被引:17
作者
Azerad, Pascal [1 ]
Guermond, Jean-Luc [2 ]
Popov, Bojan [2 ]
机构
[1] Univ Montpellier, UMR 5149, Inst Montpellierain Alexander Grothendieck, F-34095 Montpellier, France
[2] Texas A&M Univ, Dept Math, 3368 TAMU, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
shallow water; well-balanced approximation; invariant domain; second-order method; finite element method; positivity preserving; CENTRAL-UPWIND SCHEME; HYDROSTATIC RECONSTRUCTION; CONSERVATION-LAWS; INVARIANT REGIONS; SYSTEMS;
D O I
10.1137/17M1122463
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates a first-order and a second-order approximation technique for the shallow water equation with topography using continuous finite elements. Both methods are explicit in time and are shown to be well-balanced. The first-order method is invariant domain preserving and satisfies local entropy inequalities when the bottom is flat. Both methods are positivity preserving. Both techniques are parameter free, work well in the presence of dry states, and can be made high order in time by using strong stability preserving time stepping algorithms.
引用
收藏
页码:3203 / 3224
页数:22
相关论文
共 32 条
  • [1] [Anonymous], 20050490 AIAA
  • [2] A well-balanced positivity preserving "second-order" scheme for shallow water flows on unstructured meshes
    Audusse, E
    Bristeau, MO
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 206 (01) : 311 - 333
  • [3] A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows
    Audusse, E
    Bouchut, F
    Bristeau, MO
    Klein, R
    Perthame, B
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 25 (06) : 2050 - 2065
  • [4] UPWIND METHODS FOR HYPERBOLIC CONSERVATION-LAWS WITH SOURCE TERMS
    BERMUDEZ, A
    VAZQUEZ, E
    [J]. COMPUTERS & FLUIDS, 1994, 23 (08) : 1049 - 1071
  • [5] Efficient well-balanced hydrostatic upwind schemes for shallow-water equations
    Berthon, Christophe
    Foucher, Francoise
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (15) : 4993 - 5015
  • [6] Finite Volume Evolution Galerkin Methods for the Shallow Water Equations with Dry Beds
    Bollermann, Andreas
    Noelle, Sebastian
    Lukacova-Medvid'ova, Maria
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2011, 10 (02) : 371 - 404
  • [7] Finite difference schemes with cross derivatives correctors for multidimensional parabolic systems
    Bouchut, F
    Frid, H
    [J]. JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2006, 3 (01) : 27 - 52
  • [8] Bouchut F., 2004, FRONT MATH
  • [9] WELL-BALANCED POSITIVITY PRESERVING CENTRAL-UPWIND SCHEME ON TRIANGULAR GRIDS FOR THE SAINT-VENANT SYSTEM
    Bryson, Steve
    Epshteyn, Yekaterina
    Kurganov, Alexander
    Petrova, Guergana
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2011, 45 (03): : 423 - 446
  • [10] SWASHES: a compilation of shallow water analytic solutions for hydraulic and environmental studies
    Delestre, Olivier
    Lucas, Carine
    Ksinant, Pierre-Antoine
    Darboux, Frederic
    Laguerre, Christian
    Vo, T. -N. -Tuoi
    James, Francois
    Cordier, Stephane
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2013, 72 (03) : 269 - 300