Characteristics of Voxel Prediction Power in Full-brain Granger Causality Analysis of fMRI Data

被引:1
作者
Garg, Rahul [1 ]
Cecchi, Guillermo A. [1 ]
Rao, A. Ravishankar [1 ]
机构
[1] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
来源
MEDICAL IMAGING 2011: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING | 2011年 / 7965卷
关键词
Granger causality; fMRI; functional connectivity; effective connectivity;
D O I
10.1117/12.878311
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Functional neuroimaging research is moving from the study of "activations" to the study of "interactions" among brain regions. Granger causality analysis provides a powerful technique to model spatio-temporal interactions among brain regions. We apply this technique to full-brain fMRI data without aggregating any voxel data into regions of interest (ROIs). We circumvent the problem of dimensionality using sparse regression from machine learning. On a simple finger-tapping experiment we found that (1) a small number of voxels in the brain have very high prediction power, explaining the future time course of other voxels in the brain; (2) these voxels occur in small sized clusters (of size 1-4 voxels) distributed throughout the brain; (3) albeit small, these clusters overlap with most of the clusters identified with the non-temporal General Linear Model (GLM); and (4) the method identifies clusters which, while not determined by the task and not detectable by GLM, still influence brain activity.
引用
收藏
页数:7
相关论文
共 18 条
  • [1] Complex brain networks: graph theoretical analysis of structural and functional systems
    Bullmore, Edward T.
    Sporns, Olaf
    [J]. NATURE REVIEWS NEUROSCIENCE, 2009, 10 (03) : 186 - 198
  • [2] Feedforward, feedback and inhibitory connections in primate visual cortex
    Callaway, EM
    [J]. NEURAL NETWORKS, 2004, 17 (5-6) : 625 - 632
  • [3] CECCHI G, 2009, P 12 INT C MED IM CO, V1, P1018
  • [4] Inferring brain dynamics using Granger causality on fMRI data
    Cecchi, Guillermo A.
    Garg, Rahul
    Rao, A. Ravishankar
    [J]. 2008 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1-4, 2008, : 604 - 607
  • [5] Multivariate Granger Causality Analysis of fMRI Data
    Deshpande, Gopikrishna
    LaConte, Stephan
    James, George Andrew
    Peltier, Scott
    Hu, Xiaoping
    [J]. HUMAN BRAIN MAPPING, 2009, 30 (04) : 1361 - 1373
  • [6] Least angle regression - Rejoinder
    Efron, B
    Hastie, T
    Johnstone, I
    Tibshirani, R
    [J]. ANNALS OF STATISTICS, 2004, 32 (02) : 494 - 499
  • [7] Scale-free brain functional networks -: art. no. 018102
    Eguíluz, VM
    Chialvo, DR
    Cecchi, GA
    Baliki, M
    Apkarian, AV
    [J]. PHYSICAL REVIEW LETTERS, 2005, 94 (01)
  • [8] Distributed Hierarchical Processing in the Primate Cerebral Cortex
    Felleman, Daniel J.
    Van Essen, David C.
    [J]. CEREBRAL CORTEX, 1991, 1 (01) : 1 - 47
  • [9] Dynamic causal modelling
    Friston, KJ
    Harrison, L
    Penny, W
    [J]. NEUROIMAGE, 2003, 19 (04) : 1273 - 1302
  • [10] Garg Rahul, 2009, P263