Metabolomic profiles predict individual multidisease outcomes

被引:173
作者
Buergel, Thore [1 ]
Steinfeldt, Jakob [2 ,3 ]
Ruyoga, Greg [1 ]
Pietzner, Maik [4 ,5 ]
Bizzarri, Daniele [6 ,7 ]
Vojinovic, Dina [8 ,9 ]
zu Belzen, Julius Upmeier [1 ]
Loock, Lukas [1 ]
Kittner, Paul [1 ]
Christmann, Lara [1 ]
Hollmann, Noah [1 ]
Strangalies, Henrik [1 ]
Braunger, Jana M. [1 ]
Wild, Benjamin [1 ]
Chiesa, Scott T. [10 ]
Spranger, Joachim [3 ,11 ,12 ]
Klostermann, Fabian [13 ,14 ,15 ]
van den Akker, Erik B. [6 ,7 ,16 ]
Trompet, Stella [17 ,18 ]
Mooijaart, Simon P. [17 ]
Sattar, Naveed [19 ]
Jukema, J. Wouter [18 ,20 ]
Lavrijssen, Birgit [8 ,21 ]
Kavousi, Maryam [8 ]
Ghanbari, Mohsen [8 ]
Ikram, Mohammad A. [8 ]
Slagboom, Eline [6 ,22 ]
Kivimaki, Mika [23 ,24 ]
Langenberg, Claudia [4 ,5 ]
Deanfield, John [10 ]
Eils, Roland [1 ,25 ,26 ]
Landmesser, Ulf [2 ,3 ]
机构
[1] Charite Univ Med Berlin, Ctr Digital Hlth, Berlin Inst Hlth, Berlin, Germany
[2] Charite Univ Med Berlin, Dept Cardiol, Campus Benjamin Franklin, Berlin, Germany
[3] Berlin Inst Hlth, Berlin, Germany
[4] Charite Univ Med Berlin, Berlin Inst Hlth, Computat Med, Berlin, Germany
[5] Univ Cambridge, Inst Metab Sci, MRC Epidemiol Unit, Cambridge, England
[6] LUMC, Mol Epidemiol, Leiden, Netherlands
[7] LUMC, Leiden Computat Biol Ctr, Leiden, Netherlands
[8] Erasmus MC Univ Med Ctr, Dept Epidemiol, Rotterdam, Netherlands
[9] Leiden Univ Med Ctr, Dept Biomed Data Sci, Mol Epidemiol, Leiden, Netherlands
[10] UCL, Inst Cardiovasc Sci, London, England
[11] Charite Univ Med Berlin, Dept Endocrinol & Metab, Berlin, Germany
[12] Charite Univ Med Berlin, Ctr Cardiovasc Res, Berlin, Germany
[13] Humboldt Univ, Dept Neurol, Berlin, Germany
[14] Charite Univ Med Berlin, Berlin Inst Hlth, Berlin, Germany
[15] Humboldt Univ, Sch Mind & Brain, Berlin, Germany
[16] Delft Univ Technol, Delft Bioinformat Lab, Delft, Netherlands
[17] Leiden Univ Med Ctr, Dept Internal Med, Div Gerontol & Geriatr, Leiden, Netherlands
[18] Leiden Univ Med Ctr, Dept Cardiol, Leiden, Netherlands
[19] Univ Glasgow, Cardiovasc Res Ctr, Inst Cardiovasc & Med Sci, Glasgow, Lanark, Scotland
[20] Netherlands Heart Inst, Utrecht, Netherlands
[21] Erasmus MC Univ Med Ctr, Dept Surg, Rotterdam, Netherlands
[22] Max Planck Inst Biol Ageing, Cologne, Germany
[23] UCL, Dept Epidemiol & Publ Hlth, London, England
[24] Univ Helsinki, Fac Med, Clinicum, Helsinki, Finland
[25] Heidelberg Univ Hosp, Hlth Data Sci Unit, Heidelberg, Germany
[26] BioQuant, Heidelberg, Germany
基金
英国惠康基金; 荷兰研究理事会; 英国医学研究理事会;
关键词
MAGNETIC-RESONANCE METABOLOMICS; CARDIOVASCULAR-DISEASE; RISK-FACTORS; CIRCULATING METABOLITES; MYOCARDIAL-INFARCTION; ASSOCIATION; DEMENTIA; HYPERGLYCEMIA; EPIDEMIOLOGY; PRAVASTATIN;
D O I
10.1038/s41591-022-01980-3
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Risk stratification is critical for the early identification of high-risk individuals and disease prevention. Here we explored the potential of nuclear magnetic resonance (NMR) spectroscopy-derived metabolomic profiles to inform on multidisease risk beyond conventional clinical predictors for the onset of 24 common conditions, including metabolic, vascular, respiratory, musculoskeletal and neurological diseases and cancers. Specifically, we trained a neural network to learn disease-specific metabolomic states from 168 circulating metabolic markers measured in 117,981 participants with -1.4 million person-years of follow-up from the UK Biobank and validated the model in four independent cohorts. We found metabolomic states to be associated with incident event rates in all the investigated conditions, except breast cancer. For 10-year outcome prediction for 15 endpoints, with and without established metabolic contribution, a combination of age and sex and the metabolomic state equaled or outperformed established predictors. Moreover, metabolomic state added predictive information over comprehensive clinical variables for eight common diseases, including type 2 diabetes, dementia and heart failure. Decision curve analyses showed that predictive improvements translated into clinical utility for a wide range of potential decision thresholds. Taken together, our study demonstrates both the potential and limitations of NMR-derived metabolomic profiles as a multidisease assay to inform on the risk of many common diseases simultaneously.
引用
收藏
页码:2309 / +
页数:32
相关论文
共 78 条
[1]   Personal aging markers and ageotypes revealed by deep longitudinal profiling [J].
Ahadi, Sara ;
Zhou, Wenyu ;
Schussler-Fiorenza Rose, Sophia Miryam ;
Sailani, M. Reza ;
Contrepois, Kevin ;
Avina, Monika ;
Ashland, Melanie ;
Brunet, Anne ;
Snyder, Michael .
NATURE MEDICINE, 2020, 26 (01) :83-+
[2]   Circulating metabolites and the risk of type 2 diabetes: a prospective study of 11,896 young adults from four Finnish cohorts [J].
Ahola-Olli, Ari V. ;
Mustelin, Linda ;
Kalimeri, Maria ;
Kettunen, Johannes ;
Jokelainen, Jari ;
Auvinen, Juha ;
Puukka, Katri ;
Havulinna, Aki S. ;
Lehtimaki, Terho ;
Kahonen, Mika ;
Juonala, Markus ;
Keinanen-Kiukaanniemi, Sirkka ;
Salomaa, Veikko ;
Perola, Markus ;
Jarvelin, Marjo-Riitta ;
Ala-Korpela, Mika ;
Raitakari, Olli ;
Wurtz, Peter .
DIABETOLOGIA, 2019, 62 (12) :2298-2309
[3]   Apt interpretation of comprehensive lipoprotein data in large-scale epidemiology: disclosure of fundamental structural and metabolic relationships [J].
Ala-Korpela, Mika ;
Zhao, Siyu ;
Jarvelin, Marjo-Riitta ;
Makinen, Ville-Petteri ;
Ohukainen, Pauli .
INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2021, :996-1011
[4]  
[Anonymous], NHS HLTH CHECK
[5]  
[Anonymous], 2022, B REC
[6]   Combined Diet and Physical Activity Promotion Programs to Prevent Type 2 Diabetes Among Persons at Increased Risk: A Systematic Review for the Community Preventive Services Task Force [J].
Balk, Ethan M. ;
Earley, Amy ;
Raman, Gowri ;
Avendano, Esther A. ;
Pittas, Anastassios G. ;
Remington, Patrick L. .
ANNALS OF INTERNAL MEDICINE, 2015, 163 (06) :437-+
[7]   The UK Biobank resource with deep phenotyping and genomic data [J].
Bycroft, Clare ;
Freeman, Colin ;
Petkova, Desislava ;
Band, Gavin ;
Elliott, Lloyd T. ;
Sharp, Kevin ;
Motyer, Allan ;
Vukcevic, Damjan ;
Delaneau, Olivier ;
O'Connell, Jared ;
Cortes, Adrian ;
Welsh, Samantha ;
Young, Alan ;
Effingham, Mark ;
McVean, Gil ;
Leslie, Stephen ;
Allen, Naomi ;
Donnelly, Peter ;
Marchini, Jonathan .
NATURE, 2018, 562 (7726) :203-+
[8]  
Collins GS, 2015, ANN INTERN MED, V162, P55, DOI [10.7326/M14-0697, 10.1136/bmj.g7594, 10.1016/j.jclinepi.2014.11.010, 10.1038/bjc.2014.639, 10.1002/bjs.9736, 10.1016/j.eururo.2014.11.025, 10.1186/s12916-014-0241-z, 10.7326/M14-0698]
[9]  
COX DR, 1972, J R STAT SOC B, V34, P187
[10]  
Davidson-Pilon C., 2021, CAM DAVIDSON PILON L, DOI [10.5281/zenodo.4457577, DOI 10.5281/ZENODO.4457577]