MXene as a Cation-Selective Cathode Material for Asymmetric Capacitive Deionization

被引:111
作者
Chen, Bingbing [1 ,2 ,3 ]
Feng, Aihu [1 ,2 ,3 ]
Deng, Ruixiang [1 ,2 ,3 ]
Liu, Kun [1 ,2 ,3 ]
Yu, Yun [1 ,2 ,3 ]
Song, Lixin [1 ,2 ,3 ]
机构
[1] SICCAS, Key Lab Inorgan Coating Mat CAS, Shanghai 200050, Peoples R China
[2] UCAS, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Jingdezhen Ceram Inst, Sch Mat Sci & Engn, Jingdezhen 333403, Peoples R China
关键词
MXene (Ti3C2Tx); co-ion expulsion effect; negatively charged group; cation-selective cathode material; asymmetric capacitive deionization; WATER DESALINATION; SEAWATER DESALINATION; GRAPHENE; PERFORMANCE; MEMBRANE; COMPOSITE; EXFOLIATION; FABRICATION; NANOSHEETS; BRACKISH;
D O I
10.1021/acsami.9b19684
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Capacitive deionization (CDI) has become a promising method to solve the shortage of freshwater resources recently. However, the co-ion expulsion effect obviously hinders electrosorption capacity and charge efficiency of CDI. In this work, an asymmetric CDI cell is assembled in which Nat-intercalated Ti3C2Tx (NaOH-Ti3C2Tx) serves as a cation-selective cathode, while the activated carbon (AC) serves as the anode. The NaOH-Ti3C2Tx with negatively charged surface groups (-OH, -O, and -F) is adopted to weaken the co-ion expulsion effect. Benefited from the synergistic effect of the reduced co-ion expulsion effect and expanded interlayer space, the asymmetric CDI cell achieves a higher electrosorption capacity of 12.19 mg g(-1) and a higher charge efficiency of 0.826 compared with the symmetric one composed of AC (4.55 mg g(-1) and 0.306) in 100 mg L-1 NaCl solution. High cyclic stability of the as-prepared asymmetric CDI cell is also observed. The improved desalination performance indicates that NaOH-Ti3C2Tx is a promising alternative as cation-selective cathode material for asymmetric CDI cells. The desalination mechanism is discussed in detail to lay the foundation for further improvement of the CDI performance of other 2D materials like MXene.
引用
收藏
页码:13750 / 13758
页数:9
相关论文
共 56 条
[1]   Developments in thermal desalination processes: Design, energy, and costing aspects [J].
Al-Sahali, Mohammad ;
Ettouney, Hisham .
DESALINATION, 2007, 214 (1-3) :227-240
[2]   Porous Cryo-Dried MXene for Efficient Capacitive Deionization [J].
Bao, Weizhai ;
Tang, Xiao ;
Guo, Xin ;
Choi, Sinho ;
Wang, Chengyin ;
Gogotsi, Yury ;
Wang, Guoxiu .
JOULE, 2018, 2 (04) :778-787
[3]   MXene-Conducting Polymer Asymmetric Pseudocapacitors [J].
Boota, Muhammad ;
Gogotsi, Yury .
ADVANCED ENERGY MATERIALS, 2019, 9 (07)
[4]   Electrodialysis for water desalination: A critical assessment of recent developments on process fundamentals, models and applications [J].
Campione, A. ;
Gurreri, L. ;
Ciofalo, M. ;
Micale, G. ;
Tamburini, A. ;
Cipollina, A. .
DESALINATION, 2018, 434 :121-160
[5]   MXene/Co3O4 composite material: Stable synthesis and its enhanced broadband microwave absorption [J].
Deng, Ruixiang ;
Chen, Bingbing ;
Li, Haogeng ;
Zhang, Ke ;
Zhang, Tao ;
Yu, Yun ;
Song, Lixin .
APPLIED SURFACE SCIENCE, 2019, 488 :921-930
[6]   Development of a novel graphene/Co3O4 composite for hybrid capacitive deionization system [J].
Divyapriya, Govindaraj ;
Vijayakumar, Keshav Kumar ;
Nambi, Indumathi .
DESALINATION, 2019, 451 :102-110
[7]   Flexible 3D Nanoporous Graphene for Desalination and Biodecontamination of Brackish Water via Asymmetric Capacitive Deionization [J].
El-Deen, Ahmed G. ;
Boom, Remko M. ;
Kim, Hak Yong ;
Duan, Hongwei ;
Chan-Park, Mary B. ;
Choi, Jae-Hwan .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (38) :25313-25325
[8]   Graphene wrapped MnO2-nanostructures as effective and stable electrode materials for capacitive deionization desalination technology [J].
El-Deen, Ahmed G. ;
Barakat, Nasser A. M. ;
Kim, Hak Yong .
DESALINATION, 2014, 344 :289-298
[9]   Barium removal from synthetic natural and produced water using MXene as two dimensional (2-D) nanosheet adsorbent [J].
Fard, Ahmad Kayvani ;
Mckay, Gordon ;
Chamoun, Rita ;
Rhadfi, Tarik ;
Preud'Homme, Hugues ;
Atieh, Muataz A. .
CHEMICAL ENGINEERING JOURNAL, 2017, 317 :331-342
[10]   Fabrication and thermal stability of NH4HF2-etched Ti3C2 MXene [J].
Feng, Aihu ;
Yu, Yun ;
Jiang, Feng ;
Wang, Yong ;
Mi, Le ;
Yu, Yang ;
Song, Lixin .
CERAMICS INTERNATIONAL, 2017, 43 (08) :6322-6328