Predicting macroscopic elastic rock properties requires detailed information on microstructure

被引:9
作者
Wetzel, Maria [1 ]
Kempka, Thomas [1 ]
Kuehn, Michael [1 ,2 ]
机构
[1] GFZ German Res Ctr Geosci, Fluid Syst Modelling, Telegrafenberg, D-14473 Potsdam, Germany
[2] Univ Potsdam, Inst Earth & Environm Sci, Karl Liebknecht Str 24-25, D-14476 Potsdam, Germany
来源
EUROPEAN GEOSCIENCES UNION GENERAL ASSEMBLY 2017, EGU DIVISION ENERGY, RESOURCES & ENVIRONMENT (ERE) | 2017年 / 125卷
关键词
digital rock physics; effective elastic properties; numerical homogenization; Young's modulus; micromechanics; geomaterials; REACTIVE TRANSPORT SIMULATIONS; MECHANICAL-BEHAVIOR; COMPOSITE-MATERIALS; HOMOGENIZATION; STORAGE; INCLUSIONS; BENTONITE; SYSTEMS; PHYSICS; STRESS;
D O I
10.1016/j.egypro.2017.08.195
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Predicting variations in macroscopic mechanical rock behaviour due to microstructural changes, driven by mineral precipitation and dissolution is necessary to couple chemo-mechanical processes in geological subsurface simulations. We apply 3D numerical homogenization models to estimate Young's moduli for five synthetic microstructures, and successfully validate our results for comparable geometries with the analytical Mori-Tanaka approach. Further, we demonstrate that considering specific rock microstructures is of paramount importance, since calculated elastic properties may deviate by up to 230 % for the same mineral composition. Moreover, agreement between simulated and experimentally determined Young's moduli is significantly improved, when detailed spatial information are employed. (C) 2017 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:561 / 570
页数:10
相关论文
共 44 条
[31]   A micro-macro homogenization scheme for elastic composites containing high volume fraction multi-shape inclusions [J].
Parsaee, A. ;
Shokrieh, M. M. ;
Mondali, M. .
COMPUTATIONAL MATERIALS SCIENCE, 2016, 121 :217-224
[32]   Account of the liquid limit of mixed crystals on the basis of the plasticity condition for single crystal [J].
Reuss, A .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1929, 9 :49-58
[33]   What controls the mechanical properties of shale rocks? - Part II: Brittleness [J].
Rybacki, E. ;
Meier, T. ;
Dresen, G. .
JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2016, 144 :39-58
[34]   Digital carbonate rock physics [J].
Saenger, Erik H. ;
Vialle, Stephanie ;
Lebedev, Maxim ;
Uribe, David ;
Osorno, Maria ;
Duda, Mandy ;
Steeb, Holger .
SOLID EARTH, 2016, 7 (04) :1185-1197
[35]  
Sain R., 2014, The Leading Edge, V33, P324, DOI [10.1190/tle33030324.1, DOI 10.1190/TLE33030324.1]
[36]   Effective medium methods and a computational approach for estimating geomaterial properties of porous materials with randomly oriented ellipsoidal pores [J].
Suvorov, A. P. ;
Selvadurai, A. P. S. .
COMPUTERS AND GEOTECHNICS, 2011, 38 (05) :721-730
[37]   Coupled mechanical and chemical processes in engineered geothermal reservoirs with dynamic permeability [J].
Taron, Joshua ;
Elsworth, Derek .
INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2010, 47 (08) :1339-1348
[38]   Prediction of the effective Young's modulus of a particulate composite containing fractured particles [J].
Teng, Hong .
FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2013, 65 :32-38
[39]   Fault damage zone volume and initial salinity distribution determine intensity of shallow aquifer salinisation in subsurface storage [J].
Tillner, Elena ;
Langer, Maria ;
Kempka, Thomas ;
Kuehn, Michael .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2016, 20 (03) :1049-1067
[40]   Modeling elastic properties of siliciclastic rocks [J].
Vernik, Lev ;
Kachanov, Mark .
GEOPHYSICS, 2010, 75 (06) :E171-E182