VCCIM: a voltage coupling based computing-in-memory architecture in 28 nm for edge AI applications

被引:2
作者
Guo, An [1 ]
Xue, Chen [1 ]
Chen, Xi [1 ]
Si, Xin [1 ]
机构
[1] Southeast Univ, Nanjing 210018, Jiangsu, Peoples R China
关键词
Neural network; Computing-in-memory; Configurability; MACRO; OPERATION;
D O I
10.1007/s42514-022-00111-1
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Computing-in-memory (CIM) has been widely explored for parallelizing multiply-and-accumulation (MAC) operations and reducing data access to overcome "Von-Neumann bottleneck". However, most CIM works lack configurability regardless of custom demands. In this paper, we proposed a 28 nm 128 Kb configurable CIM architecture based on voltage coupling (VCCIM) and a CIM-based modeling and predicting (CIMMP) method. This macro achieves an energy efficiency of 12.1-17.6 TOPS/W and 71.70-72.01% inference accuracy when applied to a VGG-16 network CIFAR-100 data set.
引用
收藏
页码:407 / 420
页数:14
相关论文
共 30 条
[1]  
Bong K, 2017, ISSCC DIG TECH PAP I, P248, DOI 10.1109/ISSCC.2017.7870354
[2]   PXNOR-BNN: In/With Spin-Orbit Torque MRAM Preset-XNOR Operation-Based Binary Neural Networks [J].
Chang, Liang ;
Ma, Xin ;
Wang, Zhaohao ;
Zhang, Youguang ;
Xie, Yuan ;
Zhao, Weisheng .
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2019, 27 (11) :2668-2679
[3]  
Chen YH, 2016, ISSCC DIG TECH PAP I, V59, P262, DOI 10.1109/ISSCC.2016.7418007
[4]   PRIME: A Novel Processing-in-memory Architecture for Neural Network Computation in ReRAM-based Main Memory [J].
Chi, Ping ;
Li, Shuangchen ;
Xu, Cong ;
Zhang, Tao ;
Zhao, Jishen ;
Liu, Yongpan ;
Wang, Yu ;
Xie, Yuan .
2016 ACM/IEEE 43RD ANNUAL INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE (ISCA), 2016, :27-39
[5]   An 89TOPS/W and 16.3TOPS/mm2 All-Digital SRAM-Based Full-Precision Compute-In Memory Macro in 22nm for Machine-Learning Edge Applications [J].
Chih, Yu-Der ;
Lee, Po-Hao ;
Fujiwara, Hidehiro ;
Shih, Yi-Chun ;
Lee, Chia-Fu ;
Naous, Rawan ;
Chen, Yu-Lin ;
Lo, Chieh-Pu ;
Lu, Cheng-Han ;
Mori, Haruki ;
Zhao, Wei-Cheng ;
Sun, Dar ;
Sinangil, Mahmut E. ;
Chen, Yen-Huei ;
Chou, Tan-Li ;
Akarvardar, Kerem ;
Liao, Hung-Jen ;
Wang, Yih ;
Chang, Meng-Fan ;
Chang, Tsung-Yung Jonathan .
2021 IEEE INTERNATIONAL SOLID-STATE CIRCUITS CONFERENCE (ISSCC), 2021, 64 :252-+
[6]   A 5.99-to-691.1TOPS/W Tensor-Train In-Memory-Computing Processor Using Bit-Level-Sparsity-Based Optimization and Variable-Precision Quantization [J].
Guo, Ruiqi ;
Yue, Zhiheng ;
Si, Xin ;
Hu, Te ;
Li, Hao ;
Tang, Limei ;
Wang, Yabing ;
Liu, Leibo ;
Chang, Meng-Fan ;
Li, Qiang ;
Wei, Shaojun ;
Yin, Shouyi .
2021 IEEE INTERNATIONAL SOLID-STATE CIRCUITS CONFERENCE (ISSCC), 2021, 64 :242-+
[7]   Functional Read Enabling In-Memory Computations in 1Transistor-1Resistor Memory Arrays [J].
Jaiswal, Akhilesh ;
Andrawis, Robert ;
Agrawal, Amogh ;
Roy, Kaushik .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2020, 67 (12) :3347-3351
[8]   C3SRAM: An In-Memory-Computing SRAM Macro Based on Robust Capacitive Coupling Computing Mechanism [J].
Jiang, Zhewei ;
Yin, Shihui ;
Seo, Jae-Sun ;
Seok, Mingoo .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2020, 55 (07) :1888-1897
[9]  
Khwa WS, 2018, ISSCC DIG TECH PAP I, P496, DOI 10.1109/ISSCC.2018.8310401
[10]   A Charge-domain 10T SRAM based In-Memory-Computing Macro for Low Energy and Highly Accurate DNN inference [J].
Kim, Joonhyung ;
Park, Jongsun .
18TH INTERNATIONAL SOC DESIGN CONFERENCE 2021 (ISOCC 2021), 2021, :89-90