Mean residual life regression with functional principal component analysis on longitudinal data for dynamic prediction

被引:5
作者
Lin, Xiao [1 ,2 ]
Lu, Tao [1 ]
Yan, Fangrong [1 ]
Li, Ruosha [3 ]
Huang, Xuelin [2 ]
机构
[1] China Pharmaceut Univ, Res Ctr Biostat & Computat Pharm, Nanjing 210009, Jiangsu, Peoples R China
[2] Univ Texas MD Anderson Canc Ctr, Dept Biostat, Houston, TX 77030 USA
[3] Univ Texas Hlth Sci Ctr Houston, Dept Biostat, Houston, TX 77030 USA
关键词
Life expectancy; Longitudinal data; Stochastic process; Supermodel; Survival analysis; MODEL; TIME;
D O I
10.1111/biom.12876
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Predicting patient life expectancy is of great importance for clinicians in making treatment decisions. This prediction needs to be conducted in a dynamic manner, based on longitudinal biomarkers repeatedly measured during the patient's post-treatment follow-up period. The prediction is updated any time a new biomarker measurement is obtained. The heterogeneity across patients of biomarker trajectories over time requires flexible and powerful approaches to model noisy and irregularly measured longitudinal data. In this article, we use functional principal component analysis (FPCA) to extract the dominant features of the biomarker trajectory of each individual, and use these features as time-dependent predictors (covariates) in a transformed mean residual life (MRL) regression model to conduct dynamic prediction. Simulation studies demonstrate the improved performance of the transformed MRL model that includes longitudinal biomarker information in the prediction. We apply the proposed method to predict the remaining time expectancy until disease progression for patients with chronic myeloid leukemia, using the transcript levels of an oncogene, BCR-ABL.
引用
收藏
页码:1482 / 1491
页数:10
相关论文
共 32 条
[1]   BCR-ABL tyrosine kinase inhibitors in the treatment of Philadelphia chromosome positive chronic myeloid leukemia: A review [J].
An, Xin ;
Tiwari, Amit K. ;
Sun, Yibo ;
Ding, Pei-Rong ;
Ashby, Charles R., Jr. ;
Chen, Zhe-Sheng .
LEUKEMIA RESEARCH, 2010, 34 (10) :1255-1268
[2]  
Assouline S, 2011, CURR ONCOL, V18, pE71
[3]   Linear life expectancy regression with censored data [J].
Chen, Y. Q. ;
Cheng, S. .
BIOMETRIKA, 2006, 93 (02) :303-313
[4]   Additive expectancy regression [J].
Chen, Ying Qing .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (477) :153-166
[5]   Semiparametric regression analysis of mean residual life with censored survival data [J].
Chen, YQ ;
Cheng, S .
BIOMETRIKA, 2005, 92 (01) :19-29
[6]   Semiparametric estimation of proportional mean residual life model in presence of censoring [J].
Chen, YQ ;
Jewell, NP ;
Lei, X ;
Cheng, SC .
BIOMETRICS, 2005, 61 (01) :170-178
[7]   A semiparametric inverse-Gaussian model and inference for survival data with a cured proportion [J].
Choi, Sangbum ;
Huang, Xuelin ;
Cormier, Janice N. ;
Doksum, Kjell A. .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2014, 42 (04) :635-649
[8]  
Guess F., 1988, Reliability and Quality Control, V7, P215, DOI [10.1016/S0169-7161(88)07014-2, DOI 10.1016/S0169-7161(88)07014-2]
[9]  
Harrell FE, 1996, STAT MED, V15, P361, DOI 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO
[10]  
2-4