Formation of Mn-Ni Prussian Blue Analogue Spheres as a Superior Cathode Material for Potassium-Ion Batteries

被引:46
作者
Li, An [1 ]
Duan, Liping [1 ]
Liao, Jiaying [1 ]
Sun, Jianlu [1 ]
Man, Yuehua [1 ]
Zhou, Xiaosi [1 ]
机构
[1] Nanjing Normal Univ, Sch Chem & Mat Sci, Nanjing 210023, Peoples R China
来源
ACS APPLIED ENERGY MATERIALS | 2022年 / 5卷 / 09期
基金
中国国家自然科学基金;
关键词
potassium-ion batteries; cathode; manganese hexacyanoferrate; porous structure; Ni substitution; HIGH-VOLTAGE; PERFORMANCE;
D O I
10.1021/acsaem.2c02288
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Potassium manganese hexacyanoferrate shows great potential as a cathode material for potassium-ion batteries (PIBs) due to its impressive electrochemical performance, abundant elements, and easy synthesis. However, severe capacity fading and poor K+ diffusion kinetics greatly limit its large-scale application. Herein, we propose a facile anion exchange method to construct Mn-Ni Prussian blue analogue (denoted MnNi-PBA) spheres. The introduction of Ni can stabilize the structure to enhance the cycling performance, and rich active sites can be provided by the formation of a unique porous spherical structure, thus enabling shorter ion diffusion pathways during charge/discharge. Consequently, the MnNi-PBA sphere cathode delivers an initial discharge capacity of 130.6 mAh g(-1) at 10 mA g(-1), an enhanced rate capability of 66.3 mAh(-1) at 200 mA g(-1), and a long cycle life with 83.8% capacity retention after 500 cycles. When assembled with a pitch-derived soft carbon anode, a full cell exhibits excellent cycling stability and rate performance. In addition, ex situ X-ray diffraction demonstrates that the MnNi-PBA spheres undergo reversible structural changes (monoclinic <-> cubic) throughout the cycling process. Therefore, this work may offer a design strategy to synthesize Mn-based Prussian blue analogues for the application of PIBs.
引用
收藏
页码:11789 / 11796
页数:8
相关论文
共 51 条
  • [1] The Scale-up and Commercialization of Nonaqueous Na-Ion Battery Technologies
    Bauer, Alexander
    Song, Jie
    Vail, Sean
    Pan, Wei
    Barker, Jerry
    Lu, Yuhao
    [J]. ADVANCED ENERGY MATERIALS, 2018, 8 (17)
  • [2] A novel K-ion battery: hexacyanoferrate(II)/graphite cell
    Bie, Xiaofei
    Kubota, Kei
    Hosaka, Tomooki
    Chihara, Kuniko
    Komaba, Shinichi
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (09) : 4325 - 4330
  • [3] Potassium Nickel Iron Hexacyanoferrate as Ultra-Long-Life Cathode Material for Potassium-Ion Batteries with High Energy Density
    Chong, Shaokun
    Yang, Jing
    Sun, Lan
    Guo, Shengwu
    Liu, Yongning
    Liu, Hua Kun
    [J]. ACS NANO, 2020, 14 (08) : 9807 - 9818
  • [4] Potassium nickel hexacyanoferrate as cathode for high voltage and ultralong life potassium-ion batteries
    Chong, Shaokun
    Wu, Yifang
    Guo, Shengwu
    Liu, Yongning
    Cao, Guozhong
    [J]. ENERGY STORAGE MATERIALS, 2019, 22 : 120 - 127
  • [5] Defect-free potassium manganese hexacyanoferrate cathode material for high-performance potassium-ion batteries
    Deng, Leqing
    Qu, Jiale
    Niu, Xiaogang
    Liu, Juzhe
    Zhang, Juan
    Hong, Youran
    Feng, Meiying
    Wang, Jiangwei
    Hu, Miao
    Zeng, Liang
    Zhang, Qianfan
    Guo, Lin
    Zhu, Yujie
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [6] P3-type K0.5Mn0.72Ni0.15Co0.13O2 microspheres as cathode materials for high performance potassium-ion batteries
    Deng, Qiang
    Zheng, Fenghua
    Zhong, Wentao
    Pan, Qichang
    Liu, Yanzhen
    Li, Youpeng
    Chen, Guilin
    Li, Yunsha
    Yang, Chenghao
    Liu, Meilin
    [J]. CHEMICAL ENGINEERING JOURNAL, 2020, 392
  • [7] Zn2+ Induced Phase Transformation of K2MnFe(CN)6 Boosts Highly Stable Zinc-Ion Storage
    Deng, Wenjun
    Li, Zhengang
    Ye, Yaokun
    Zhou, Zhuqing
    Li, Yibo
    Zhang, Man
    Yuan, Xinran
    Hu, Jun
    Zhao, Wenguang
    Huang, Zhongyuan
    Li, Chang
    Chen, Haibiao
    Zheng, Jiaxin
    Li, Rui
    [J]. ADVANCED ENERGY MATERIALS, 2021, 11 (31)
  • [8] Micron-sized NiMn-glycerate solid spheres as cathode materials for all-solid-state asymmetric supercapacitor with superior energy density and cycling life
    Ding, Shanshan
    An, Jian
    Ding, Dong
    Zou, Yining
    Zhao, Lijun
    [J]. CHEMICAL ENGINEERING JOURNAL, 2022, 431
  • [9] Recent advancements in Prussian blue analogues: Preparation and application in batteries
    Du, Guangyu
    Pang, Huan
    [J]. ENERGY STORAGE MATERIALS, 2021, 36 (36) : 387 - 408
  • [10] Metal Sulfide-Based Potassium-Ion Battery Anodes: Storage Mechanisms and Synthesis Strategies
    Du, Yichen
    Zhang, Zhuangzhuang
    Xu, Yifan
    Bao, Jianchun
    Zhou, Xiaosi
    [J]. ACTA PHYSICO-CHIMICA SINICA, 2022, 38 (11)