Discrete-time expectation maximization algorithms for Markov-modulated Poisson processes

被引:15
作者
Elliott, Robert J. [1 ]
Malcolm, W. R. [2 ,3 ]
机构
[1] Univ Calgary, Haskayne Sch Business, Calgary, AB T2N 1N4, Canada
[2] NICTA, Stat Machine Learning Program, Canberra, ACT 2600, Australia
[3] Australian Natl Univ, Inst Math Sci, Canberra, ACT 0200, Australia
基金
澳大利亚研究理事会;
关键词
change of measure; counting processes; expectation maximization (EM) algorithm; martingales;
D O I
10.1109/TAC.2007.914305
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we consider parameter estimation Markov-modulated Poisson processes via robust filtering and smoothing techniques. Using the expectation maximization algorithm framework, our filters and smoothers can be applied to estimate the parameters of our model in either an online configuration or an offline configuration. Further, our estimator dynamics do not involve stochastic integrals and our new formulas, in terms of time integrals, are easily discretized, and are written in numerically stable forms in W. P. Malcolm, R. J. Elliott, and J. van der Hoek, "On the numerical stability of time-discretized state estimation via clark transformations," presented at the IEEE Conf. Decision Control, Mauii, HI, Dec. 2003.
引用
收藏
页码:247 / 256
页数:10
相关论文
共 32 条
[1]  
Aggoun L., 2004, MEASURE THEORY FILTE
[2]  
[Anonymous], 1997, EM ALGORITHM EXTENSI
[3]  
Bremaud P., 1981, Point Processes and Queues: Martingale Dynamics
[4]   MLE FOR PARTIALLY OBSERVED DIFFUSIONS - DIRECT MAXIMIZATION VS THE EM ALGORITHM [J].
CAMPILLO, F ;
LEGLAND, F .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1989, 33 (02) :245-274
[5]  
Clark J. M. C., 1978, Communication Systems and Random Process Theory, P721
[6]   PARAMETER-ESTIMATION OF PARTIALLY OBSERVED CONTINUOUS-TIME STOCHASTIC-PROCESSES VIA THE EM ALGORITHM [J].
DEMBO, A ;
ZEITOUNI, O .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1986, 23 (01) :91-113
[7]  
Demspster A, 1997, J R STAT SOC B, V39, P1
[8]  
DENG L, 1993, TELECOMMUN SYST, V1, P321
[9]  
Elliott R. J., 1982, Stochastic Calculus and Applications
[10]   NEW FINITE-DIMENSIONAL FILTERS AND SMOOTHERS FOR NOISILY OBSERVED MARKOV-CHAINS [J].
ELLIOTT, RJ .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (01) :265-271