An iterative regularization method for total variation-based image restoration

被引:1365
|
作者
Osher, S
Burger, M
Goldfarb, D
Xu, JJ
Yin, WT
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[2] Johannes Kepler Univ Linz, Inst Ind Math, A-4040 Linz, Austria
[3] Columbia Univ, Dept Ind Engn & Operat Res, New York, NY 10027 USA
关键词
iterative regularization; total variation; Bregman distances; denoising; deblurring;
D O I
10.1137/040605412
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a new iterative regularization procedure for inverse problems based on the use of Bregman distances, with particular focus on problems arising in image processing. We are motivated by the problem of restoring noisy and blurry images via variational methods by using total variation regularization. We obtain rigorous convergence results and effective stopping criteria for the general procedure. The numerical results for denoising appear to give significant improvement over standard models, and preliminary results for deblurring/denoising are very encouraging.
引用
收藏
页码:460 / 489
页数:30
相关论文
共 50 条
  • [41] Iterative Total Variation Regularization with Non-Quadratic Fidelity
    Lin He
    Martin Burger
    Stanley J. Osher
    Journal of Mathematical Imaging and Vision, 2006, 26 : 167 - 184
  • [42] Iterative total variation regularization with non-quadratic fidelity
    He, Lin
    Burger, Martin
    Osher, Stanley J.
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2006, 26 (1-2) : 167 - 184
  • [43] Generalized total variation-based MRI Rician denoising model with spatially adaptive regularization parameters
    Liu, Ryan Wen
    Shi, Lin
    Huang, Wenhua
    Xu, Jing
    Yu, Simon Chun Ho
    Wang, Defeng
    MAGNETIC RESONANCE IMAGING, 2014, 32 (06) : 702 - 720
  • [44] l0NHTV : A Non-convex Hybrid Total Variation Regularization Method for Image Restoration
    Li, Dequan
    Wu, Peng
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 450 - 455
  • [45] TOTAL VARIATION STRUCTURED TOTAL LEAST SQUARES METHOD FOR IMAGE RESTORATION
    Zhao, Xi-Le
    Wang, Wei
    Zeng, Tie-Yong
    Huang, Ting-Zhu
    Ng, Michael K.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (06) : B1304 - B1320
  • [46] Color Image Restoration by Saturation-Value Total Variation Regularization on Vector Bundles
    Wang, Wei
    Ng, Michael K.
    SIAM JOURNAL ON IMAGING SCIENCES, 2021, 14 (01) : 178 - 197
  • [47] A Total Variation-Based JPEG Decompression Model
    Bredies, K.
    Holler, M.
    SIAM JOURNAL ON IMAGING SCIENCES, 2012, 5 (01): : 366 - 393
  • [48] MIXED REGULARIZATION METHOD FOR IMAGE RESTORATION
    Cimrak, Ivan
    Melicher, Valdemar
    ALGORITMY 2009: 18TH CONFERENCE ON SCIENTIFIC COMPUTING, 2009, : 226 - 235
  • [49] DIRECTIONAL DECOMPOSITION BASED TOTAL VARIATION IMAGE RESTORATION
    Pipa, Daniel R.
    Chan, Stanley H.
    Nguyen, Truong Q.
    2012 PROCEEDINGS OF THE 20TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2012, : 1558 - 1562
  • [50] A Novel Scatter-Matrix Eigenvalues-Based Total Variation(SMETV) Regularization for Medical Image Restoration
    Huang, Zhenghua
    Zhang, Tianxu
    Deng, Lihua
    Fang, Hao
    Li, Qian
    MIPPR 2015: PARALLEL PROCESSING OF IMAGES AND OPTIMIZATION; AND MEDICAL IMAGING PROCESSING, 2015, 9814