An iterative regularization method for total variation-based image restoration

被引:1365
|
作者
Osher, S
Burger, M
Goldfarb, D
Xu, JJ
Yin, WT
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[2] Johannes Kepler Univ Linz, Inst Ind Math, A-4040 Linz, Austria
[3] Columbia Univ, Dept Ind Engn & Operat Res, New York, NY 10027 USA
关键词
iterative regularization; total variation; Bregman distances; denoising; deblurring;
D O I
10.1137/040605412
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a new iterative regularization procedure for inverse problems based on the use of Bregman distances, with particular focus on problems arising in image processing. We are motivated by the problem of restoring noisy and blurry images via variational methods by using total variation regularization. We obtain rigorous convergence results and effective stopping criteria for the general procedure. The numerical results for denoising appear to give significant improvement over standard models, and preliminary results for deblurring/denoising are very encouraging.
引用
收藏
页码:460 / 489
页数:30
相关论文
共 50 条