Product of Extension Domains is still an Extension Domain

被引:2
作者
Koskela, Pekka [1 ]
Zhu, Zheng [1 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, POB 35, FI-40014 Jyvaskyla, Finland
基金
芬兰科学院;
关键词
Sobolev extension; product; REGULAR SUBSETS;
D O I
10.1512/iumj.2020.69.8366
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Our main result gives a functional property of the class of W-1,W-p-extension domains. Let Omega(1) subset of R-n and Omega(2) subset of R-m both be W-1,W-p-extensiondomains for some 1 < p <= infinity. We prove that Omega(1) x Omega(2) subset of Rn+m is also a W-1,W-p-extensiondomain. We also establish the converse statement.
引用
收藏
页码:137 / 150
页数:14
相关论文
共 21 条
[1]  
[Anonymous], 1971, Tr. Mosk. Mat. Obs.
[2]  
BRUDNY Yu. A., 1977, THESIS
[3]  
Brudnyi Y., 1973, MATH USSR IZV, V37, P345
[4]  
BRUDNYI YA, 1970, MATH USSR IZV, V4, P568
[5]  
Brudnyi YA., 1970, Math. USSR-Sb, V2, P157, DOI [10.1070/SM1970v011n02ABEH002065, DOI 10.1070/SM1970V011N02ABEH002065]
[6]  
BRUDNYI YA, 1976, LECT NOTES MATH, V556, P73
[7]  
Brudnyi Yu., 1994, T MOSK MAT OBSHCH, V55, p[149, 123]
[8]   ESTIMATES FOR SINGULAR INTEGRAL OPERATORS IN TERMS OF MAXIMAL FUNCTIONS [J].
CALDERON, AP .
STUDIA MATHEMATICA, 1972, 44 (06) :563-582
[9]  
Hajlasz P, 2008, REV MAT IBEROAM, V24, P645
[10]   Sobolev embeddings, extensions and measure density condition [J].
Hajlasz, Piotr ;
Koskela, Pekka ;
Tuominen, Heli .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (05) :1217-1234