Dielectric-Modulated Biosensing with Ultrahigh-Frequency-Operated Graphene Field-Effect Transistors

被引:30
作者
Zhang, Xiaoyan [1 ,2 ]
Liu, Tingxian [2 ]
Boyle, Aimee [2 ]
Bahreman, Azadeh [2 ]
Bao, Lei [1 ]
Jing, Qiushi [1 ]
Xue, Honglei [1 ]
Kieltyka, Roxanne [2 ]
Kros, Alexander [2 ]
Schneider, Gregory F. [2 ]
Fu, Wangyang [1 ]
机构
[1] Tsinghua Univ, Sch Mat Sci & Engn, 1 Tsinghua Yuan, Beijing 100084, Peoples R China
[2] Leiden Univ, Leiden Inst Chem, Fac Sci, Einsteinweg 55, NL-2333 CC Leiden, Netherlands
基金
中国国家自然科学基金; 欧洲研究理事会; 欧盟地平线“2020”;
关键词
dielectric modulation; field effect; graphene biosensors; ionic screening; ultrahigh frequency; DEBYE-SCREENING LENGTH; POLYELECTROLYTE MULTILAYERS; COILED-COILS; PERFORMANCE;
D O I
10.1002/adma.202106666
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Owing to their excellent electrical properties and chemical stability, graphene field-effect transistors (Gr-FET) are extensively studied for biosensing applications. However, hinging on surface interactions of charged biomolecules, the sensitivity of Gr-FET is hampered by ionic screening under physiological conditions with high salt concentrations up to frequencies as high as MHz. Here, an electrolyte-gated Gr-FET in reflectometry mode at ultrahigh frequencies (UHF, around 2 GHz), where the ionic screening is fully cancelled and the dielectric sensitivity of the device allows the Gr-FET to directly function in high-salt solutions, is configured. Strikingly, by simultaneous characterization using electrolyte gating and UHF reflectometry, the developed graphene biosensors offer unprecedented capability for real-time monitoring of dielectric-specified biomolecular/cell interactions/activities, with superior limit of detection compared to that of previously reported nanoscale high-frequency sensors. These achievements highlight the unique potential of ultrahigh-frequency operation for unblocking the true potential of graphene biosensors for point-of-care diagnostic.
引用
收藏
页数:8
相关论文
共 36 条
[1]   Microwaving Blood as a Non-Destructive Technique for Haemoglobin Measurements on Microlitre Samples [J].
Basey-Fisher, Toby H. ;
Guerra, Nadia ;
Triulzi, Chiara ;
Gregory, Andrew ;
Hanham, Stephen M. ;
Stevens, Molly M. ;
Maier, Stefan A. ;
Klein, Norbert .
ADVANCED HEALTHCARE MATERIALS, 2014, 3 (04) :536-542
[3]   Enzyme-coated carbon nanotubes as single-molecule biosensors [J].
Besteman, K ;
Lee, JO ;
Wiertz, FGM ;
Heering, HA ;
Dekker, C .
NANO LETTERS, 2003, 3 (06) :727-730
[4]   Detection of biomolecular surface interactions by transit time measurements with a coplanar transmission line probe [J].
Chen, Qin ;
Roitman, Daniel ;
Knoesen, Andre .
SENSORS AND ACTUATORS A-PHYSICAL, 2009, 152 (02) :151-159
[5]   Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species [J].
Cui, Y ;
Wei, QQ ;
Park, HK ;
Lieber, CM .
SCIENCE, 2001, 293 (5533) :1289-1292
[6]   Electronic transport in two-dimensional graphene [J].
Das Sarma, S. ;
Adam, Shaffique ;
Hwang, E. H. ;
Rossi, Enrico .
REVIEWS OF MODERN PHYSICS, 2011, 83 (02) :407-470
[7]   Dielectric Modulated Biosensor Architecture: Tunneling or Accumulation Based Transistor? [J].
Dwivedi, Praveen ;
Kranti, Abhinav .
IEEE SENSORS JOURNAL, 2018, 18 (08) :3228-3235
[8]   Electrolyte gate dependent high-frequency measurement of graphene field-effect transistor for sensing applications [J].
Fu, W. ;
El Abbassi, M. ;
Hasler, T. ;
Jung, M. ;
Steinacher, M. ;
Calame, M. ;
Schoenenberger, C. ;
Puebla-Hellmann, G. ;
Hellmueller, S. ;
Ihn, T. ;
Wallraff, A. .
APPLIED PHYSICS LETTERS, 2014, 104 (01)
[9]   High mobility graphene ion-sensitive field-effect transistors by noncovalent functionalization [J].
Fu, W. ;
Nef, C. ;
Tarasov, A. ;
Wipf, M. ;
Stoop, R. ;
Knopfmacher, O. ;
Weiss, M. ;
Calame, M. ;
Schoenenberger, C. .
NANOSCALE, 2013, 5 (24) :12104-12110
[10]   Sensing at the Surface of Graphene Field-Effect Transistors [J].
Fu, Wangyang ;
Jiang, Lin ;
van Geest, Erik P. ;
Lima, Lia M. C. ;
Schneider, Gregory F. .
ADVANCED MATERIALS, 2017, 29 (06)