OsSDIR1 overexpression greatly improves drought tolerance in transgenic rice

被引:111
|
作者
Gao, Ting [1 ,2 ]
Wu, Yaorong [1 ]
Zhang, Yiyue [1 ]
Liu, Lijing [1 ,2 ]
Ning, Yuese [1 ]
Wang, Dongjiang [1 ]
Tong, Hongning [1 ]
Chen, Shouyi [1 ]
Chu, Chengcai [1 ]
Xie, Qi [1 ]
机构
[1] Chinese Acad Sci, Inst Genet & Dev Biol, Natl Ctr Plant Gene Res, State Key Lab Plant Genom, Beijing 100101, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Beijing 100101, Peoples R China
关键词
Rice; Ubiquitination; E3; ligase; Drought stress; Stomata; E3 UBIQUITIN LIGASE; NEGATIVE REGULATOR; STRESS TOLERANCE; PROTEIN; COLD; DEGRADATION; RESPONSES; ENCODES; DEFENSE; ATCHIP;
D O I
10.1007/s11103-011-9775-z
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent genomic and genetic analyses based on Arabidopsis suggest that ubiquitination plays crucial roles in the plant response to abiotic stress and the phytohormone abscisic acid (ABA). However, few such studies have been reported in rice as a monocotyledonous model plant. Taking advantage of strategies in biochemistry, molecular cell biology and genetics, the RING-finger containing E3 ligase OsSDIR1 (Oryza sativa SALT-AND DROUGHT-INDUCED RING FINGER 1) was found to be a candidate drought tolerance gene for engineering of crop plants. The expression of OsSDIR1 was detected in all tissues of rice and up-regulated by drought and NaCl, but not by ABA. In vitro ubiquitination assays demonstrated that OsSDIR1 is a functional E3 ubiquitin ligase and that the RING finger region is required for its activity. OsSDIR1 could complement the drought sensitive phenotype of the sdir1 mutant and overexpressing transgenic Arabidopsis were more sensitive to ABA, indicating that the OsSDIR1 gene is a functional ortholog of SDIR1. Upon drought treatment, the OsSDIR1-transgenic rice showed strong drought tolerance compared to control plants. Analysis of the stomata aperture revealed that there were more closed stomatal pores in transgenic plants than those of control plants. This result was also confirmed by the water loss assay and leaf related water content (RWC) measurements during drought treatment. Thus, we demonstrated that monocot- and dicot- SDIR1s are conserved yet have diverse functions.
引用
收藏
页码:145 / 156
页数:12
相关论文
共 50 条
  • [1] OsSDIR1 overexpression greatly improves drought tolerance in transgenic rice
    Ting Gao
    Yaorong Wu
    Yiyue Zhang
    Lijing Liu
    Yuese Ning
    Dongjiang Wang
    Hongning Tong
    Shouyi Chen
    Chengcai Chu
    Qi Xie
    Plant Molecular Biology, 2011, 76 : 145 - 156
  • [2] Stress-inducible expression of AtDREB1A transcription factor greatly improves drought stress tolerance in transgenic indica rice
    Ravikumar, G.
    Manimaran, P.
    Voleti, S. R.
    Subrahmanyam, D.
    Sundaram, R. M.
    Bansal, K. C.
    Viraktamath, B. C.
    Balachandran, S. M.
    TRANSGENIC RESEARCH, 2014, 23 (03) : 421 - 439
  • [3] Stress-inducible expression of AtDREB1A transcription factor greatly improves drought stress tolerance in transgenic indica rice
    G. Ravikumar
    P. Manimaran
    S. R. Voleti
    D. Subrahmanyam
    R. M. Sundaram
    K. C. Bansal
    B. C. Viraktamath
    S. M. Balachandran
    Transgenic Research, 2014, 23 : 421 - 439
  • [4] Overexpression of TaSTRG gene improves salt and drought tolerance in rice
    Zhou, Wei
    Li, Ying
    Zhao, Bao-Cun
    Ge, Rong-Chao
    Shen, Yin-Zhu
    Wang, Gang
    Huang, Zhan-Jing
    JOURNAL OF PLANT PHYSIOLOGY, 2009, 166 (15) : 1660 - 1671
  • [5] Overexpression of OsNAC14 Improves Drought Tolerance in Rice
    Shim, Jae Sung
    Oh, Nuri
    Chung, Pil Joong
    Kim, Youn Shic
    Do Choi, Yang
    Kim, Ju-Kon
    FRONTIERS IN PLANT SCIENCE, 2018, 9
  • [6] Overexpression of BdRHP1 improves drought tolerance and reduces yield loss in rice
    Zeng, D. -E.
    Cai, Z. -M.
    Liu, Y. -S.
    BIOLOGIA PLANTARUM, 2019, 63 : 371 - 379
  • [7] Overexpression of an ERF transcription factor TSRF1 improves rice drought tolerance
    Quan, Ruidang
    Hu, Shoujing
    Zhang, Zhili
    Zhang, Haiwen
    Zhang, Zhijin
    Huang, Rongfeng
    PLANT BIOTECHNOLOGY JOURNAL, 2010, 8 (04) : 476 - 488
  • [8] Overexpression of a soybean expansin gene, GmEXP1, improves drought tolerance in transgenic tobacco
    Thanh Son Lo
    Hoang Duc Le
    Vu Thanh Thanh Nguyen
    Hoang Ha Chu
    Van Son Le
    Hoang Mau Chu
    TURKISH JOURNAL OF BOTANY, 2015, 39 (06) : 988 - 995
  • [9] Overexpression of TaCOMT Improves Melatonin Production and Enhances Drought Tolerance in Transgenic Arabidopsis
    Yang, Wen-Jing
    Du, Yong-Tao
    Zhou, Yong-Bin
    Chen, Jun
    Xu, Zhao-Shi
    Ma, You-Zhi
    Chen, Ming
    Min, Dong-Hong
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (03):
  • [10] Overexpression of rice NAC gene SNAC1 in ramie improves drought and salt tolerance
    An, Xia
    Liao, Yiwen
    Zhang, Jingyu
    Dai, Lunjin
    Zhang, Na
    Wang, Bo
    Liu, Lijun
    Peng, Dingxiang
    PLANT GROWTH REGULATION, 2015, 76 (02) : 211 - 223