An adaptive extrapolation discontinuous Galerkin method for the valuation of Asian options

被引:6
作者
Marcozzi, Michael D. [1 ]
机构
[1] Univ Nevada, Dept Math Sci, Las Vegas, NV 89154 USA
基金
美国国家科学基金会;
关键词
Optimal stopping; Ultraparabolic equations; Discontinuous Galerkin method; Extrapolation; Asian options; CONSERVATION-LAWS; ULTRAPARABOLIC EQUATION; DIFFERENTIAL-EQUATIONS; VISCOSITY SOLUTIONS; ERROR ESTIMATION; BROWNIAN-MOTION; ULTRADIFFUSION;
D O I
10.1016/j.cam.2011.02.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the approximation of the optimal stopping problem associated with ultradiffusion processes in the context of mathematical finance and the valuation of Asian options. In particular, the value function is characterized as the solution of an ultraparabolic variational inequality. Employing the penalty method and a regularization of the state space, we develop higher-order adaptive approximation schemes which utilize the extrapolation discontinuous Galerkin method in temporal space. Numerical examples are provided in order to demonstrate the approach. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:3632 / 3645
页数:14
相关论文
共 52 条
[11]  
Ciarlet PhilippeG., 1980, FINITE ELEMENT METHO
[12]   QUASIMONOTONE SCHEMES FOR SCALAR CONSERVATION-LAWS .1. [J].
COCKBURN, B .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (06) :1325-1341
[13]   TVB RUNGE-KUTTA LOCAL PROJECTION DISCONTINUOUS GALERKIN FINITE-ELEMENT METHOD FOR CONSERVATION-LAWS .2. GENERAL FRAMEWORK [J].
COCKBURN, B ;
SHU, CW .
MATHEMATICS OF COMPUTATION, 1989, 52 (186) :411-435
[14]  
Cockburn B, 2000, LECT NOTES COMP SCI, V11, P3
[15]   USERS GUIDE TO VISCOSITY SOLUTIONS OF 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS [J].
CRANDALL, MG ;
ISHII, H ;
LIONS, PL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (01) :1-67
[16]   RECENT PROGRESS IN EXTRAPOLATION METHODS FOR ORDINARY DIFFERENTIAL-EQUATIONS [J].
DEUFLHARD, P .
SIAM REVIEW, 1985, 27 (04) :505-535
[17]  
Deuflhard P., 2002, Scientific Computing with Ordinary Differential Equations
[18]  
DEWYNNE J, 1995, ADV FUTURES OPTIONS, V8, P145
[19]  
Fleming W. H., 2012, Deterministic and Stochastic Optimal Control
[20]  
Geman H., 1993, Math. Fin, V3, P349, DOI [DOI 10.1111/J.1467-9965.1993.TB00092.X, 10.1111/j.1467-9965.1993.tb00092.x]