An adaptive extrapolation discontinuous Galerkin method for the valuation of Asian options

被引:6
作者
Marcozzi, Michael D. [1 ]
机构
[1] Univ Nevada, Dept Math Sci, Las Vegas, NV 89154 USA
基金
美国国家科学基金会;
关键词
Optimal stopping; Ultraparabolic equations; Discontinuous Galerkin method; Extrapolation; Asian options; CONSERVATION-LAWS; ULTRAPARABOLIC EQUATION; DIFFERENTIAL-EQUATIONS; VISCOSITY SOLUTIONS; ERROR ESTIMATION; BROWNIAN-MOTION; ULTRADIFFUSION;
D O I
10.1016/j.cam.2011.02.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the approximation of the optimal stopping problem associated with ultradiffusion processes in the context of mathematical finance and the valuation of Asian options. In particular, the value function is characterized as the solution of an ultraparabolic variational inequality. Employing the penalty method and a regularization of the state space, we develop higher-order adaptive approximation schemes which utilize the extrapolation discontinuous Galerkin method in temporal space. Numerical examples are provided in order to demonstrate the approach. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:3632 / 3645
页数:14
相关论文
共 52 条
[1]   A posteriori finite element error estimation for diffusion problems [J].
Adjerid, S ;
Belguendouz, B ;
Flaherty, JE .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 21 (02) :728-746
[2]   A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems [J].
Adjerid, S ;
Devine, KD ;
Flaherty, JE ;
Krivodonova, L .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (11-12) :1097-1112
[3]  
Akrivis G., 1994, Calcolo, V31, P179, DOI 10.1007/BF02575877
[4]  
[Anonymous], 1984, Numerical Methods for Nonlinear Variational Problems
[5]  
Barrantes A. J. A., 1996, Manejo Integrado de Plagas, P17, DOI 10.1111/j.1467-9965.1996.tb00111.x
[6]  
BENSOUSSAN A, 1984, ACTA APPL MATH, V2, P139
[7]  
Bensoussan A., 1982, Application of variational inequalities in stochastic control
[8]   Numerical solution of variational inequalities for pricing Asian options by higher order Lagrange-Galerkin methods [J].
Bermudez, Alfredo ;
Nogueiras, Maria R. ;
Vazquez, Carlos .
APPLIED NUMERICAL MATHEMATICS, 2006, 56 (10-11) :1256-1270
[9]   PARALLEL, ADAPTIVE FINITE-ELEMENT METHODS FOR CONSERVATION-LAWS [J].
BISWAS, R ;
DEVINE, KD ;
FLAHERTY, JE .
APPLIED NUMERICAL MATHEMATICS, 1994, 14 (1-3) :255-283
[10]   Stochastic problems in physics and astronomy [J].
Chandrasekhar, S .
REVIEWS OF MODERN PHYSICS, 1943, 15 (01) :0001-0089