Artificial Intelligence: Threat or Boon to Radiologists?

被引:101
作者
Recht, Michael [1 ]
Bryan, R. Nick [2 ]
机构
[1] NYU Langone Hlth, Dept Radiol, 660 First Ave,3rd Floor, New York, NY 10016 USA
[2] Univ Texas Austin, Dell Med Sch, Austin, TX 78712 USA
关键词
Machine learning; computer-assisted diagnosis/detection; value; efficiency; artificial intelligence; FUTURE;
D O I
10.1016/j.jacr.2017.07.007
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The development and integration of machine learning/artificial intelligence into routine clinical practice will significantly alter the current practice of radiology. Changes in reimbursement and practice patterns will also continue to affect radiology. But rather than being a significant threat to radiologists, we believe these changes, particularly machine learning/artificial intelligence, will be a boon to radiologists by increasing their value, efficiency, accuracy, and personal satisfaction.
引用
收藏
页码:1476 / 1480
页数:5
相关论文
共 14 条
[1]  
American College of Radiology, IM 3 0 FAQ
[2]  
[Anonymous], MD ANDERSON BENCHES
[3]   The End of Radiology? Three Threats to the Future Practice of Radiology [J].
Chockley, Katie ;
Emanuel, Ezekiel .
JOURNAL OF THE AMERICAN COLLEGE OF RADIOLOGY, 2016, 13 (12) :1415-1420
[4]   Surveying Academic Radiology Department Chairs Regarding New and Effective Strategies for Medical Student Recruitment [J].
Francavilla, Michael L. ;
Arleo, Elizabeth Kagan ;
Bluth, Edward I. ;
Straus, Christopher M. ;
Reddy, Sravanthi ;
Recht, Michael P. .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2016, 207 (06) :1171-1175
[5]  
Harvey L, NEIMAN ALMANAC SELEC
[6]   Adapting to Artificial Intelligence Radiologists and Pathologists as Information Specialists [J].
Jha, Saurabh ;
Topol, Eric J. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2016, 316 (22) :2353-2354
[7]   Large scale deep learning for computer aided detection of mammographic lesions [J].
Kooi, Thijs ;
Litjens, Geert ;
van Ginneken, Bram ;
Gubern-Merida, Albert ;
Sancheza, Clara I. ;
Mann, Ritse ;
den Heeten, Ard ;
Karssemeijer, Nico .
MEDICAL IMAGE ANALYSIS, 2017, 35 :303-312
[8]   Automated prostate cancer detection using T2-weighted and high-b-value diffusion-weighted magnetic resonance imaging [J].
Kwak, Jin Tae ;
Xu, Sheng ;
Wood, Bradford J. ;
Turkbey, Baris ;
Choyke, Peter L. ;
Pinto, Peter A. ;
Wang, Shijun ;
Summers, Ronald M. .
MEDICAL PHYSICS, 2015, 42 (05) :2368-2378
[9]   The Effects of Changes in Utilization and Technological Advancements Of Cross-Sectional Imaging on Radiologist Workload [J].
McDonald, Robert J. ;
Schwartz, Kara M. ;
Eckel, Laurence J. ;
Diehn, Felix E. ;
Hunt, Christopher H. ;
Bartholmai, Brian J. ;
Erickson, Bradley J. ;
Kallmes, David F. .
ACADEMIC RADIOLOGY, 2015, 22 (09) :1191-1198
[10]  
Mitchell T. M., 1997, MACH LEARN, pXVII