Artificial Intelligence: Threat or Boon to Radiologists?

被引:99
作者
Recht, Michael [1 ]
Bryan, R. Nick [2 ]
机构
[1] NYU Langone Hlth, Dept Radiol, 660 First Ave,3rd Floor, New York, NY 10016 USA
[2] Univ Texas Austin, Dell Med Sch, Austin, TX 78712 USA
关键词
Machine learning; computer-assisted diagnosis/detection; value; efficiency; artificial intelligence; FUTURE;
D O I
10.1016/j.jacr.2017.07.007
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The development and integration of machine learning/artificial intelligence into routine clinical practice will significantly alter the current practice of radiology. Changes in reimbursement and practice patterns will also continue to affect radiology. But rather than being a significant threat to radiologists, we believe these changes, particularly machine learning/artificial intelligence, will be a boon to radiologists by increasing their value, efficiency, accuracy, and personal satisfaction.
引用
收藏
页码:1476 / 1480
页数:5
相关论文
共 14 条
  • [1] American College of Radiology, IM 3 0 FAQ
  • [2] [Anonymous], MD ANDERSON BENCHES
  • [3] The End of Radiology? Three Threats to the Future Practice of Radiology
    Chockley, Katie
    Emanuel, Ezekiel
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF RADIOLOGY, 2016, 13 (12) : 1415 - 1420
  • [4] Surveying Academic Radiology Department Chairs Regarding New and Effective Strategies for Medical Student Recruitment
    Francavilla, Michael L.
    Arleo, Elizabeth Kagan
    Bluth, Edward I.
    Straus, Christopher M.
    Reddy, Sravanthi
    Recht, Michael P.
    [J]. AMERICAN JOURNAL OF ROENTGENOLOGY, 2016, 207 (06) : 1171 - 1175
  • [5] Harvey L, NEIMAN ALMANAC SELEC
  • [6] Adapting to Artificial Intelligence Radiologists and Pathologists as Information Specialists
    Jha, Saurabh
    Topol, Eric J.
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2016, 316 (22): : 2353 - 2354
  • [7] Large scale deep learning for computer aided detection of mammographic lesions
    Kooi, Thijs
    Litjens, Geert
    van Ginneken, Bram
    Gubern-Merida, Albert
    Sancheza, Clara I.
    Mann, Ritse
    den Heeten, Ard
    Karssemeijer, Nico
    [J]. MEDICAL IMAGE ANALYSIS, 2017, 35 : 303 - 312
  • [8] Automated prostate cancer detection using T2-weighted and high-b-value diffusion-weighted magnetic resonance imaging
    Kwak, Jin Tae
    Xu, Sheng
    Wood, Bradford J.
    Turkbey, Baris
    Choyke, Peter L.
    Pinto, Peter A.
    Wang, Shijun
    Summers, Ronald M.
    [J]. MEDICAL PHYSICS, 2015, 42 (05) : 2368 - 2378
  • [9] The Effects of Changes in Utilization and Technological Advancements Of Cross-Sectional Imaging on Radiologist Workload
    McDonald, Robert J.
    Schwartz, Kara M.
    Eckel, Laurence J.
    Diehn, Felix E.
    Hunt, Christopher H.
    Bartholmai, Brian J.
    Erickson, Bradley J.
    Kallmes, David F.
    [J]. ACADEMIC RADIOLOGY, 2015, 22 (09) : 1191 - 1198
  • [10] Mitchell T. M., 1997, MACH LEARN, pXVII