Limits and colimits of Hopf algebras

被引:13
作者
Porst, Hans-E [1 ]
机构
[1] Univ Bremen, Dept Math & Comp Sci, D-28359 Bremen, Germany
关键词
Hopf algebras; Bialgebras; Limits; Colimits; Left and right adjoints; COALGEBRAS; CATEGORIES; CONSTRUCTIONS;
D O I
10.1016/j.jalgebra.2010.10.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that for any commutative unital ring R the category Hopf(R) of R-Hopf algebras is locally presentable and a coreflective subcategory of the category Bialg(R) of R-bialgebras, admitting cofree Hopf algebras over arbitrary R-algebras. The proofs are based on an explicit analysis of the construction of colimits of Hopf algebras, which generalizes an observation of Takeuchi. Essentially be a duality argument also the dual statement, namely that Hopf(R) is closed in Bialg(R) under limits, is shown to hold, provided that the ring R is von Neumann regular. It then follows that Hopf(R) is reflective in Bialg(R) and admits free Hopf algebras over arbitrary R-coalgebras, for any von Neumann regular ring R. Finally, Takeuchi's free Hopf algebra construction is analysed and shown to be simply a composition of standard categorical constructions. By simple dualization also a construction of the Hopf coreflection is provided. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:254 / 267
页数:14
相关论文
共 23 条
[1]  
Adamek J., 2003, Mathematical Structures in Computer Science, V13, P201, DOI 10.1017/S0960129502003882
[2]   On tree coalgebras and coalgebra presentations [J].
Adámek, J ;
Porst, HE .
THEORETICAL COMPUTER SCIENCE, 2004, 311 (1-3) :257-283
[3]  
Adamek J., 1994, LMS LECT NOTE SERIES
[4]  
Adamek J., 1990, ABSTRACT CONCRETE CA
[5]  
AGORE A, ARXIV09052613
[6]  
[Anonymous], 1998, Categories for the working mathematician
[7]  
Brzezinski T., 2003, CORINGS COMODULES
[8]  
CHIRVASITU A, ARXIV09072881
[9]  
Dascalescu S., 2001, HOPF ALGEBRAS INTRO
[10]   REGULAR CATEGORIES AND REGULAR FUNCTORS [J].
HERRLICH, H .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1974, 26 (03) :709-720