LR Hunting: A Random Forest Based Cell-Cell Interaction Discovery Method for Single-Cell Gene Expression Data

被引:13
作者
Lu, Min [1 ]
Sha, Yifan [1 ]
Silva, Tiago C. [1 ]
Colaprico, Antonio [1 ]
Sun, Xiaodian [2 ]
Ban, Yuguang [1 ,2 ]
Wang, Lily [1 ,2 ,3 ,4 ]
Lehmann, Brian D. [5 ,6 ]
Chen, X. Steven [1 ,2 ]
机构
[1] Univ Miami, Miller Sch Med, Dept Publ Hlth Sci, Miami, FL 33136 USA
[2] Univ Miami, Miller Sch Med, Sylvester Comprehens Canc Ctr, Miami, FL 33136 USA
[3] Univ Miami, Miller Sch Med, Dr John T Macdonald Fdn Dept Human Genet, Miami, FL 33136 USA
[4] Univ Miami, Miller Sch Med, John P Hussman Inst Human Genom, Miami, FL 33136 USA
[5] Vanderbilt Univ, Med Ctr, Dept Med, Nashville, TN USA
[6] Vanderbilt Univ, Med Ctr, Vanderbilt Ingram Canc Ctr, Nashville, TN USA
关键词
random forests; ligand-receptor interaction; cell-cell interaction; cell-cell communications; single-cell RNA-seq; BREAST-CANCER; TUMOR; IDENTIFICATION; COEXPRESSION; SELECTION;
D O I
10.3389/fgene.2021.708835
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Cell-cell interactions (CCIs) and cell-cell communication (CCC) are critical for maintaining complex biological systems. The availability of single-cell RNA sequencing (scRNA-seq) data opens new avenues for deciphering CCIs and CCCs through identifying ligand-receptor (LR) gene interactions between cells. However, most methods were developed to examine the LR interactions of individual pairs of genes. Here, we propose a novel approach named LR hunting which first uses random forests (RFs)-based data imputation technique to link the data between different cell types. To guarantee the robustness of the data imputation procedure, we repeat the computation procedures multiple times to generate aggregated imputed minimal depth index (IMDI). Next, we identify significant LR interactions among all combinations of LR pairs simultaneously using unsupervised RFs. We demonstrated LR hunting can recover biological meaningful CCIs using a mouse cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) dataset and a triple-negative breast cancer scRNA-seq dataset.
引用
收藏
页数:10
相关论文
共 40 条
[1]  
[Anonymous], 2021, IEEE Trans. Broadcast.
[2]   Deciphering cell-cell interactions and communication from gene expression [J].
Armingol, Erick ;
Officer, Adam ;
Harismendy, Olivier ;
Lewis, Nathan E. .
NATURE REVIEWS GENETICS, 2021, 22 (02) :71-88
[3]   SingleCellSignalR: inference of intercellular networks from single-cell transcriptomics [J].
Cabello-Aguilar, Simon ;
Alame, Melissa ;
Kon-Sun-Tack, Fabien ;
Fau, Caroline ;
Lacroix, Matthieu ;
Colinge, Jacques .
NUCLEIC ACIDS RESEARCH, 2020, 48 (10)
[4]  
Carpenter J., 2012, Multiple imputation and its application
[5]   Pathway hunting by random survival forests [J].
Chen, Xi ;
Ishwaran, Hemant .
BIOINFORMATICS, 2013, 29 (01) :99-105
[6]   Random forests for genomic data analysis [J].
Chen, Xi ;
Ishwaran, Hemant .
GENOMICS, 2012, 99 (06) :323-329
[7]   Immune Landscape of Viral- and Carcinogen-Driven Head and Neck Cancer [J].
Cillo, Anthony R. ;
Kuerten, Cornelius H. L. ;
Tabib, Tracy ;
Qi, Zengbiao ;
Onkar, Sayali ;
Wang, Ting ;
Liu, Angen ;
Duvvuri, Umamaheswar ;
Kim, Seungwon ;
Soose, Ryan J. ;
Oesterreich, Steffi ;
Chen, Wei ;
Lafyatis, Robert ;
Bruno, Tullia C. ;
Ferris, Robert L. ;
Vignali, Dario A. A. .
IMMUNITY, 2020, 52 (01) :183-+
[8]   Lung Single-Cell Signaling Interaction Map Reveals Basophil Role in Macrophage Imprinting [J].
Cohen, Merav ;
Giladi, Amir ;
Gorki, Anna-Dorothea ;
Solodkin, Dikla Gelbard ;
Zada, Mor ;
Hladik, Anastasiya ;
Miklosi, Andras ;
Salame, Tomer-Meir ;
Halpern, Keren Bahar ;
David, Eyal ;
Itzkovitz, Shalev ;
Harkany, Tibor ;
Knapp, Sylvia ;
Amit, Ido .
CELL, 2018, 175 (04) :1031-+
[9]   Giotto: a toolbox for integrative analysis and visualization of spatial expression data [J].
Dries, Ruben ;
Zhu, Qian ;
Dong, Rui ;
Eng, Chee-Huat Linus ;
Li, Huipeng ;
Liu, Kan ;
Fu, Yuntian ;
Zhao, Tianxiao ;
Sarkar, Arpan ;
Bao, Feng ;
George, Rani E. ;
Pierson, Nico ;
Cai, Long ;
Yuan, Guo-Cheng .
GENOME BIOLOGY, 2021, 22 (01)
[10]   CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes [J].
Efremova, Mirjana ;
Vento-Tormo, Miquel ;
Teichmann, Sarah A. ;
Vento-Tormo, Roser .
NATURE PROTOCOLS, 2020, 15 (04) :1484-1506