An extended Freudenthal Magic Square in characteristic 3

被引:12
作者
Cunha, Isabel [1 ]
Elduque, Alberto [2 ]
机构
[1] Univ Beira Interior, Dept Matemat, P-6200 Covilha, Portugal
[2] Univ Zaragoza, Inst Univ Matemat & Aplicac, Dept Matemat, E-50009 Zaragoza, Spain
关键词
Freudenthal's Magic Square; simple Lie superalgebras; characteristic; 3;
D O I
10.1016/j.jalgebra.2007.07.028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Freudenthal's Magic Square, which in characteristic 0 contains the exceptional Lie algebras other than G(2), is extended over fields of characteristic 3, through the use of symmetric composition superalgebras, to a larger square that contains both Lie algebras and superalgebras. With one exception, the simple Lie superalgebras that appear have no counterpart in characteristic 0. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:471 / 509
页数:39
相关论文
共 28 条
[1]   NONASSOCIATIVE COEFFICIENT ALGEBRAS FOR STEINBERG UNITARY LIE-ALGEBRAS [J].
ALLISON, BN ;
FAULKNER, JR .
JOURNAL OF ALGEBRA, 1993, 161 (01) :1-19
[2]  
[Anonymous], 1972, GRAD TEXTS MATH
[3]  
Baez JC, 2002, B AM MATH SOC, V39, P145
[4]   Magic squares and matrix models of Lie algebras [J].
Barton, CH ;
Sudbery, A .
ADVANCES IN MATHEMATICS, 2003, 180 (02) :596-647
[5]  
BARTON CH, ARXIVMATHRA0001083
[6]   The Tits construction and the exceptional simple classical lie superalgebras [J].
Benkart, G ;
Elduque, A .
QUARTERLY JOURNAL OF MATHEMATICS, 2003, 54 :123-137
[7]   Lie algebras graded by finite root systems and intersection matrix algebras [J].
Benkart, G ;
Zelmanov, E .
INVENTIONES MATHEMATICAE, 1996, 126 (01) :1-45
[8]  
BOUARROUDJ S, ARXIVMATHRT0611391
[9]  
CARTAN E, 1938, LECONS THEORIES SPIN
[10]  
CUNHA I, 2007, THESIS U BEIRA INTER, V3