A Weighted Kernel-based Hierarchical Classification Method for Zoning of Sensors in Indoor Wireless Networks

被引:0
作者
Alshamaa, Daniel [1 ]
Mourad-Chehade, Farah [1 ]
Honeine, Paul [2 ]
机构
[1] Univ Technol Troyes, LM2S, UMR 6281, CNRS,ROSAS,Inst Charles Delaunay, Troyes, France
[2] Univ Rouen Normandie, LITIS Lab, Rouen, France
来源
2018 IEEE 19TH INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (SPAWC) | 2018年
关键词
Belief functions; classification; feature selection; hierarchical clustering; kernel density estimation; zoning; BELIEF FUNCTIONS; MACHINES;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents a solution for localization of sensors by zoning, in indoor wireless networks. The problem is tackled by a classification technique, where the objective is to classify the zone of the mobile sensor for any observation. The method is hierarchical and uses the belief functions theory to assign confidence levels for zones. For this purpose, kernel density estimation is used first to model the features observations. The algorithm then uses hierarchical clustering and similarity divergence, creating a two-level hierarchy, to reduce the number of zones to be classified at a time. At each level of the hierarchy, a feature selection technique is carried to optimize the misclassification rate and feature redundancy. Experiments are realized in a wireless sensor network to evaluate the performance of the proposed method.
引用
收藏
页码:566 / 570
页数:5
相关论文
共 50 条
[21]   Kernel-Based Weighted Abundance Constrained Linear Spectral Mixture Analysis [J].
Liu, Keng-Hao ;
Wong, Englin ;
Chang, Chein-I .
ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XVII, 2011, 8048
[22]   WEIGHTED KERNEL-BASED SIGNATURE SUBSPACE PROJECTION FOR HYPERSPECTRAL TARGET DETECTION [J].
He, Mingyi ;
Mei, Hanxue ;
Wu, Yiming ;
Yan, Hongmei .
2018 9TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2018,
[23]   Enhanced Kernel-Based Multilayer Fuzzy Weighted Extreme Learning Machines [J].
Wang, Yang ;
Wang, An-Na ;
Ai, Qing ;
Sun, Hai-Jing .
IEEE ACCESS, 2020, 8 :166246-166260
[24]   Texture classification using feature selection and kernel-based techniques [J].
Carlos Fernandez-Lozano ;
Jose A. Seoane ;
Marcos Gestal ;
Tom R. Gaunt ;
Julian Dorado ;
Colin Campbell .
Soft Computing, 2015, 19 :2469-2480
[25]   Texture classification using feature selection and kernel-based techniques [J].
Fernandez-Lozano, Carlos ;
Seoane, Jose A. ;
Gestal, Marcos ;
Gaunt, Tom R. ;
Dorado, Julian ;
Campbell, Colin .
SOFT COMPUTING, 2015, 19 (09) :2469-2480
[26]   Overlapping area hyperspheres for kernel-based similarity method [J].
Slimene, Alya ;
Zagrouba, Ezzeddine .
PATTERN ANALYSIS AND APPLICATIONS, 2017, 20 (04) :1227-1243
[27]   Imbalanced data classification based on scaling kernel-based support vector machine [J].
Zhang, Yong ;
Fu, Panpan ;
Liu, Wenzhe ;
Chen, Guolong .
NEURAL COMPUTING & APPLICATIONS, 2014, 25 (3-4) :927-935
[28]   Imbalanced data classification based on scaling kernel-based support vector machine [J].
Yong Zhang ;
Panpan Fu ;
Wenzhe Liu ;
Guolong Chen .
Neural Computing and Applications, 2014, 25 :927-935
[29]   An adaptive kernel-based weighted extreme learning machine approach for effective detection of Parkinson's disease [J].
Wang, Yang ;
Wang, An-Na ;
Ai, Qing ;
Sun, Hai-Jing .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2017, 38 :400-410
[30]   Hierarchical distributed data classification in wireless sensor networks [J].
Cheng, Xu ;
Xu, Ji ;
Pei, Jian ;
Liu, Jiangchuan .
COMPUTER COMMUNICATIONS, 2010, 33 (12) :1404-1413