Uniform estimates for oscillatory integrals with homogeneous polynomial phases of degree 4

被引:4
作者
Ruzhansky, Michael [1 ,2 ]
Safarov, Akbar R. [3 ,4 ]
Khasanov, Gafurjan A. [4 ]
机构
[1] Univ Ghent, Dept Math Anal Log & Discrete Math, Krijgslaan 281, Ghent, Belgium
[2] Queen Mary Univ London, Sch Math Sci, London, England
[3] Acad Sci Uzbek, Inst Math, Olmazor Dist Univ 46, Tashkent, Uzbekistan
[4] Samarkand State Univ, Dept Math, 15 Univ Blvd, Samarkand 140104, Uzbekistan
基金
英国工程与自然科学研究理事会;
关键词
Oscillatory integral; Phase function; Amplitude; CORPUT; VAN;
D O I
10.1007/s13324-022-00747-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the uniform estimates for oscillatory integrals with homogeneous polynomial phases of degree 4 in two variables. The obtained estimate is sharp and the result is an analogue of the more general theorem of Karpushkin (Proc I.G.Petrovsky Seminar 9:3-39, 1983) for sufficiently smooth functions, thus, in particular, removing the analyticity assumption.
引用
收藏
页数:15
相关论文
共 22 条
[1]  
[Anonymous], 1977, Mathematical Surveys and Monographs
[2]  
Arnold V. I., 1985, Singularities of Differentiable Maps, V82, DOI [10.1007/978-1-4612-5154-5, DOI 10.1007/978-1-4612-5154-5]
[3]   Multidimensional van der Corput and sublevel set estimates [J].
Carbery, A ;
Christ, M ;
Wright, J .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (04) :981-1015
[4]  
CENKO A. N. VAR, 1976, Funkcional. Anal. i Prilozen., V10, P13
[5]   OSCILLATORY INTEGRALS, LAGRANGE IMMERSIONS AND UNFOLDING OF SINGULARITIES [J].
DUISTERMAAT, JJ .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1974, 27 (02) :207-281
[6]  
Fedoryuk M. V., 1977, The Saddle-Point Method
[7]   INVARIANT ESTIMATES OF 2-DIMENSIONAL TRIGONOMETRIC INTEGRALS [J].
IKROMOV, IA .
MATHEMATICS OF THE USSR-SBORNIK, 1990, 67 (02) :473-488
[8]  
Ikromov IA., 2016, FOURIER RESTRICTION, P194, DOI [10.1515/9781400881246, DOI 10.1515/9781400881246]
[9]   Uniform Estimates for the Fourier Transform of Surface Carried Measures in R3 and an Application to Fourier Restriction [J].
Ikromov, Isroil A. ;
Mueller, Detlef .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2011, 17 (06) :1292-1332
[10]  
Ikromov IA, 2021, Arxiv, DOI arXiv:2111.03747