Advanced dielectric polymers for energy storage

被引:303
作者
Wu, Xudong [1 ]
Chen, Xin [2 ]
Zhang, Q. M. [2 ]
Tan, Daniel Q. [1 ]
机构
[1] Guangdong Technion Israel Inst Technol, Dept Mat Sci & Engn, Shantou 515063, Peoples R China
[2] Penn State Univ, Dept Elect Engn, University Pk, PA 16802 USA
关键词
Capacitors; Dielectric polymer films; Thickness effect; Filler contents; High-temperature; Processing methods; CHEMICAL-VAPOR-DEPOSITION; BREAKDOWN STRENGTH; ELECTRICAL-PROPERTIES; SIZE-DEPENDENCE; FILM CAPACITOR; DC BREAKDOWN; THIN-FILMS; NANOCOMPOSITES; TEMPERATURE; DENSITY;
D O I
10.1016/j.ensm.2021.10.010
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The miniaturization of electronic devices and the structural optimization of power systems put forward a strict size requirement for passive components such as capacitors. The thickness reduction of dielectric polymer films becomes a necessary and urgent measure for future technology development. This advance leads to a higher capacitance density, less raw resource consumption, and lightweight modules and systems. However, the thickness change inevitably challenges the dielectric properties, the surface condition, and their relationship with the fabrication method of the dielectric films. This review primarily discusses: (1) the influence of polymer film thickness on the dielectric properties, (2) film quality issues in thinner polymer films with different filler contents, (3) high temperature dielectric polymer engineering, and (4) the major processing methods in decreasing polymer film thickness. In addition, the polymer films also require scalability, processibility, and industrial feasibility in film and component manufacturing. The perspective of future investigations and concerns of dielectric polymer films are shared. It is interesting to see the favorable effect of multilayer polymer films on enhancing the dielectric strength.
引用
收藏
页码:29 / 47
页数:19
相关论文
共 169 条
[1]   Thickness dependence of ac electrical conductivity and dielectric behavior of plasma polymerized 1, 1, 3, 3-tetramethoxypropane thin films [J].
Afroze, Tamanna ;
Bhuiyan, A. H. .
POLYMER ENGINEERING AND SCIENCE, 2018, 58 (08) :1342-1345
[2]  
Ahmad Z., 2012, Dielectric material
[3]   Tuning Nanofillers in In Situ Prepared Polyimide Nanocomposites for High-Temperature Capacitive Energy Storage [J].
Ai, Ding ;
Li, He ;
Zhou, Yao ;
Ren, Lulu ;
Han, Zhubing ;
Yao, Bin ;
Zhou, Wei ;
Zhao, Ling ;
Xu, Jianmei ;
Wang, Qing .
ADVANCED ENERGY MATERIALS, 2020, 10 (16)
[4]  
Anderson R, 1996, IEEE IND APPLIC SOC, P1327, DOI 10.1109/IAS.1996.559237
[5]   dc electric-field dependence of the dielectric constant in polar dielectrics: Multipolarization mechanism model [J].
Ang, C ;
Yu, Z .
PHYSICAL REVIEW B, 2004, 69 (17) :174109-1
[6]   High-Performance Polymers Sandwiched with Chemical Vapor Deposited Hexagonal Boron Nitrides as Scalable High-Temperature Dielectric Materials [J].
Azizi, Amin ;
Gadinski, Matthew R. ;
Li, Qi ;
Abu AlSaud, Mohammed ;
Wang, Jianjun ;
Wang, Yi ;
Wang, Bo ;
Liu, Feihua ;
Chen, Long-Qing ;
Alem, Nasim ;
Wang, Qing .
ADVANCED MATERIALS, 2017, 29 (35)
[7]   High-dielectric-constant ceramic-powder polymer composites [J].
Bai, Y ;
Cheng, ZY ;
Bharti, V ;
Xu, HS ;
Zhang, QM .
APPLIED PHYSICS LETTERS, 2000, 76 (25) :3804-3806
[8]   Amorphous fluorocarbon polymer (a-C:F) films obtained by plasma enhanced chemical vapor deposition from perfluoro-octane (C8F18) vapor.: II.: Dielectric and insulating properties [J].
Biloiu, C ;
Biloiu, IA ;
Sakai, Y ;
Sugawara, H ;
Ohta, A .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2004, 22 (04) :1158-1165
[9]   Overview of Laminar Dielectric Capacitors [J].
Boggs, Steven A. ;
Ho, Janet ;
Jow, T. Richard .
IEEE ELECTRICAL INSULATION MAGAZINE, 2010, 26 (02) :7-13
[10]   Conduction Mechanisms and Structure-Property Relationships in High Energy Density Aromatic Polythiourea Dielectric Films [J].
Burlingame, Quinn ;
Wu, Shan ;
Lin, Minren ;
Zhang, Q. M. .
ADVANCED ENERGY MATERIALS, 2013, 3 (08) :1051-1055