A note on the weak Lefschetz property of monomial complete intersections in positive characteristic

被引:25
作者
Brenner, Holger [1 ]
Kaid, Almar [1 ]
机构
[1] Univ Osnabruck, Fachbereich Math Informat 6, D-49069 Osnabruck, Germany
关键词
Syzygy; Stable bundle; Grauert-Mulich Theorem; Weak Lefschetz property; Artinian algebra; Monomial complete intersection; SYZYGY BUNDLES;
D O I
10.1007/s13348-010-0006-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let K be an algebraically closed field of characteristic p > 0. We apply a theorem of Han to give an explicit description for the weak Lefschetz property of the monomial Artinian complete intersection A = K[X, Y, Z]/(X(d), Y(d), Z(d)) in terms of d and p. This answers a question of Migliore, Miro-Roig and Nagel and, equivalently, characterizes for which characteristics the rank-2 syzygy bundle Syz(X(d), Y (d), Z(d)) on P(2) satisfies the Grauert-Mulich theorem. As a corollary we obtain that for p = 2 the algebra A has the weak Lefschetz property if and only if d = left perpendicular2(t)+1/3right perpendicular for some positive integer t. This was recently conjectured by Li and Zanello.
引用
收藏
页码:85 / 93
页数:9
相关论文
共 9 条
[1]   Looking out for stable syzygy bundles [J].
Brenner, Holger .
ADVANCES IN MATHEMATICS, 2008, 219 (02) :401-427
[2]   Syzygy bundles on P2 and the weak Lefschetz property [J].
Brenner, Holger ;
Kaid, Almar .
ILLINOIS JOURNAL OF MATHEMATICS, 2007, 51 (04) :1299-1308
[4]  
HAN C, 1991, THESIS BRANDEIS U
[5]   The Weak and Strong Lefschetz properties for Artinian K-algebras [J].
Harima, T ;
Migliore, JC ;
Nagel, U ;
Watanabe, J .
JOURNAL OF ALGEBRA, 2003, 262 (01) :99-126
[6]  
Huybrechts D, 1997, GEOMETRY MODULI SPAC
[7]  
LI J, 2010, ARXIV10024400
[8]  
MIGLIORE J, 2008, T AM MATH S IN PRESS
[9]   Mason's theorem and syzygy gaps [J].
Monsky, Paul .
JOURNAL OF ALGEBRA, 2006, 303 (01) :373-381