Nanostructured NiFe (oxy)hydroxide with easily oxidized Ni towards efficient oxygen evolution reactions

被引:65
作者
Zhong, Dazhong [1 ,2 ,3 ]
Zhang, Lei [1 ]
Li, Chengcheng [1 ]
Li, Dandan [2 ,3 ]
Wei, Congcong [2 ,3 ]
Zhao, Qiang [2 ,3 ]
Li, Jinping [2 ,3 ]
Gong, Jinlong [1 ]
机构
[1] Tianjin Univ, Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Sch Chem Engn & Technol, Minist Educ,Key Lab Green Chem Technol, Tianjin 300072, Peoples R China
[2] Taiyuan Univ Technol, Res Inst Special Chem, Taiyuan 030024, Shanxi, Peoples R China
[3] Shanxi Key Lab Gas Energy Efficient & Clean Utili, Taiyuan 030024, Shanxi, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
HIGHLY EFFICIENT; NICKEL FOAM; BIFUNCTIONAL ELECTROCATALYSTS; EVOLVING CATALYST; WATER; PERFORMANCE; NANOSHEETS; OXIDATION; OXIDES; FILM;
D O I
10.1039/c8ta04721a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrochemical water splitting into hydrogen and oxygen is one of the most promising strategies for the utilization and storage of solar energy. However, the sluggish kinetics of the oxygen evolution reaction (OER) hinder its larger-scale application. NiFe-based catalysts are some of the most efficient oxygen evolution catalysts (OECs). High-valence Ni is considered as an active site or conductive framework in NiFe-based OECs. However, the oxidation of Ni is usually hindered in the presence of Fe. This paper describes an effective strategy to produce NiFe (oxy)hydroxide with easily oxidized Ni and a hierarchical nanosheet structure as the most efficient OEC. High valence Ni may provide frameworks with good conductivity and facilitate OERs in Fe active sites. In addition, the hierarchical structure can increase the electrochemical surface area, resulting in more active sites for the OER. The as-prepared Fe-O-Ni(OH)(2) supported on nickel foam needs overpotentials of 185, 220 and 261 mV to drive current densities of 10, 100 and 500 mA cm(-2), respectively. The catalyst also shows excellent stability at the current densities of 100 and 500 mA cm(-2) for 50 hours.
引用
收藏
页码:16810 / 16817
页数:8
相关论文
共 57 条
[1]   Inexpensive synthesis of a high-performance Fe3O4-SiO2-TiO2 photocatalyst: Magnetic recovery and reuse [J].
Abbas, Nadir ;
Shao, Godlisten N. ;
Imran, Syed M. ;
Haider, Muhammad S. ;
Kim, Hee Taik .
FRONTIERS OF CHEMICAL SCIENCE AND ENGINEERING, 2016, 10 (03) :405-416
[2]   Photosynthetic energy conversion: natural and artificial [J].
Barber, James .
CHEMICAL SOCIETY REVIEWS, 2009, 38 (01) :185-196
[3]   Charge-Transfer Effects in Ni-Fe and Ni-Fe-Co Mixed-Metal Oxides for the Alkaline Oxygen Evolution Reaction [J].
Bates, Michael K. ;
Jia, Qingying ;
Doan, Huong ;
Liang, Wentao ;
Mukerjee, Sanjeev .
ACS CATALYSIS, 2016, 6 (01) :155-161
[4]   Structure-Activity Correlations in a Nickel-Borate Oxygen Evolution Catalyst [J].
Bediako, D. Kwabena ;
Lassalle-Kaiser, Benedikt ;
Surendranath, Yogesh ;
Yano, Junko ;
Yachandra, Vittal K. ;
Nocera, Daniel G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (15) :6801-6809
[5]   Oxygen Evolution Reaction Electrocatalysis on Transition Metal Oxides and (Oxy)hydroxides: Activity Trends and Design Principles [J].
Burke, Michaela S. ;
Enman, Lisa J. ;
Batchellor, Adam S. ;
Zou, Shihui ;
Boettcher, Shannon W. .
CHEMISTRY OF MATERIALS, 2015, 27 (22) :7549-7558
[6]   Cobalt-Iron (Oxy)hydroxide Oxygen Evolution Electrocatalysts: The Role of Structure and Composition on Activity, Stability, and Mechanism [J].
Burke, Michaela S. ;
Kast, Matthew G. ;
Trotochaud, Lena ;
Smith, Adam M. ;
Boettcher, Shannon W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (10) :3638-3648
[7]   Amorphous FeOOH Oxygen Evolution Reaction Catalyst for Photoelectrochemical Water Splitting [J].
Chemelewski, William D. ;
Lee, Heung-Chan ;
Lin, Jung-Fu ;
Bard, Allen J. ;
Mullins, C. Buddie .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (07) :2843-2850
[8]   Controllable Fabrication of Amorphous Co-Ni Pyrophosphates for Tuning Electrochemical Performance in Supercapacitors [J].
Chen, Chen ;
Zhang, Ning ;
He, Yulu ;
Liang, Bo ;
Ma, Renzhi ;
Liu, Xiaohe .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (35) :23114-23121
[9]   Amorphous nanostructured FeOOH and Co-Ni double hydroxides for high-performance aqueous asymmetric supercapacitors [J].
Chen, Jizhang ;
Xu, Junling ;
Zhou, Shuang ;
Zhao, Ni ;
Wong, Ching-Ping .
NANO ENERGY, 2016, 21 :145-153
[10]   An Iron-based Film for Highly Efficient Electrocatalytic Oxygen Evolution from Neutral Aqueous Solution [J].
Chen, Mingxing ;
Wu, Yizhen ;
Han, Yongzhen ;
Lin, Xiaohuan ;
Sun, Junliang ;
Zhang, Wei ;
Cao, Rui .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (39) :21852-21859