Redox Active Polyaniline-h-MoO3 Hollow Nanorods for Improved Pseudocapacitive Performance

被引:78
作者
Kumar, Vipin [1 ]
Lee, Pooi See [1 ]
机构
[1] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore
关键词
ELECTROCHEMICAL PROPERTIES; HYDROTHERMAL SYNTHESIS; CATION-EXCHANGE; ANODE MATERIALS; METAL-OXIDE; GRAPHENE; MOO3; SUPERCAPACITORS; POLYMERIZATION; ALPHA-MOO3;
D O I
10.1021/acs.jpcc.5b00153
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Combinatorial approaches in preparing nanocomposites of transition metal oxides with conductive polymers have gained enormous attention due to their outstanding pseudocapacitive properties which are mainly associated with the solid-state diffusion of electrolyte ions as well as Surface or near-surface reversible redox reactions. Hoe, we elaborate on the interplay of surface-controlled and diffusion-controlled redox reactions based on polyaniline and hexagonal molybdenum trioxide (h-MoO3) hollow nanorods to realize improved electrochemical performance of the nanocomposite electrode. The cationic species (Ferric ions) were used as the oxidants to polymerize aniline monomers and assist in the formation of h-MoO3 hollow nanorods. The formation of hMoO(3) hollow nanorods was realized through the cation exchange-assisted Kirkendall effect driven by ferric ions. The resultant core shell architecture of the polymerized h-MoO3 showed improved pseudocapacitive performance (270 F/g) when compared to the pristine h-MoO3 hollow nanorods (126 F/g) or polyaniline (180 F/g) at a current density of 1 A/g, with enhanced cycling stability.
引用
收藏
页码:9041 / 9049
页数:9
相关论文
共 72 条
[1]   Doping effect of organic sulphonic acids on the solid-state synthesized polyaniline [J].
Abdiryim, Tursun ;
Jamal, Ruxangul ;
Nurulla, Ismayil .
JOURNAL OF APPLIED POLYMER SCIENCE, 2007, 105 (02) :576-584
[2]   Tunable Plasmon Resonances in Two-Dimensional Molybdenum Oxide Nanoflakes [J].
Alsaif, Manal M. Y. A. ;
Latham, Kay ;
Field, Matthew R. ;
Yao, David D. ;
Medehkar, Nikhil V. ;
Beane, Gary A. ;
Kaner, Richard B. ;
Russo, Salvy P. ;
Ou, Jian Zhen ;
Kalantar-zadeh, Kourosh .
ADVANCED MATERIALS, 2014, 26 (23) :3931-3937
[3]   INNER AND OUTER ACTIVE SURFACE OF RUO2 ELECTRODES [J].
ARDIZZONE, S ;
FREGONARA, G ;
TRASATTI, S .
ELECTROCHIMICA ACTA, 1990, 35 (01) :263-267
[4]  
Augustyn V, 2013, NAT MATER, V12, P518, DOI [10.1038/NMAT3601, 10.1038/nmat3601]
[5]   Field Effect Biosensing Platform Based on 2D α-MoO3 [J].
Balendhran, Sivacarendran ;
Walia, Sumeet ;
Alsaif, Manal ;
Nguyen, Emily P. ;
Ou, Jian Zhen ;
Zhuiykov, Serge ;
Sriram, Sharath ;
Bhaskaran, Madhu ;
Kalantar-zadeh, Kourosh .
ACS NANO, 2013, 7 (11) :9753-9760
[6]  
Brezesinski T, 2010, NAT MATER, V9, P146, DOI [10.1038/NMAT2612, 10.1038/nmat2612]
[7]   Microwave-assisted gas/liquid interfacial synthesis of flowerlike NiO hollow nanosphere precursors and their application as supercapacitor electrodes [J].
Cao, Chang-Yan ;
Guo, Wei ;
Cui, Zhi-Min ;
Song, Wei-Guo ;
Cai, Wei .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (09) :3204-3209
[8]  
Chaudhari HK, 1996, J APPL POLYM SCI, V62, P15, DOI 10.1002/(SICI)1097-4628(19961003)62:1<15::AID-APP3>3.3.CO
[9]  
2-U
[10]   Single-crystalline MoO3 nanoplates: topochemical synthesis and enhanced ethanol-sensing performance [J].
Chen, Deliang ;
Liu, Minna ;
Yin, Li ;
Li, Tao ;
Yang, Zhen ;
Li, Xinjian ;
Fan, Bingbing ;
Wang, Hailong ;
Zhang, Rui ;
Li, Zhengxin ;
Xu, Hongliang ;
Lu, Hongxia ;
Yang, Daoyuan ;
Sun, Jing ;
Gao, Lian .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (25) :9332-9342