Soil erosion by water constitutes a serious problem affecting various countries. In the last few years, a number of studies have adopted statistical approaches for erosion susceptibility zonation. In this study, the Stochastic Gradient Treeboost (SGT) was tested as a multivariate statistical tool for exploring, analyzing and predicting the spatial occurrence of rill-interrill erosion and gully erosion. This technique implements the stochastic gradient boosting algorithm with a tree-based method. The study area is a 9.5 km(2) river catchment located in central-northern Sicily (Italy), where water erosion processes are prevalent, and affect the agricultural productivity of local communities. In order to model soil erosion by water, the spatial distribution of landforms due to rill-interrill and gully erosion was mapped and 12 environmental variables were selected as predictors. Four calibration and four validation subsets were obtained by randomly extracting sets of negative cases, both for rill-interrill erosion and gully erosion models. The results of validation, based on receiving operating characteristic (ROC) curves, showed excellent to outstanding accuracies of the models, and thus a high prediction skill. Moreover, SGT allowed us to explore the relationships between erosion landforms and predictors. A different suite of predictor variables was found to be important for the two models. Elevation, aspect, landform classification and land-use are the main controlling factors for rill-interrill erosion, whilst the stream power index, plan curvature and the topographic wetness index were the most important independent variables for gullies. Finally, an ROC plot analysis made it possible to define a threshold value to classify cells according to the presence/absence of the two erosion processes. Hence, by heuristically combining the resulting rill-interrill erosion and gully erosion susceptibility maps, an integrated water erosion susceptibility map was created. The adopted method offers the advantages of an objective and repeatable procedure, whose result is useful for local administrators to identify the areas that are most susceptible to water erosion and best allocate resources for soil conservation strategies. (C) 2016 Elsevier B.V. All rights reserved.
机构:
Univ Catholique Bukavu, Fac Agron, Bukavu, DEM REP CONGO
Univ Catholique Bukavu, Ctr Re Etud Interdisciplinaires Appl Dev Durable C, Bukavu, DEM REP CONGO
Univ Catholique Bukavu, Bukavu, DEM REP CONGOUniv Catholique Bukavu, Fac Agron, Bukavu, DEM REP CONGO
Kulimushi, Luc Cimusa
Bashagaluke, Janvier Bigabwa
论文数: 0引用数: 0
h-index: 0
机构:
Univ Catholique Bukavu, Fac Agron, Bukavu, DEM REP CONGO
Univ Catholique Bukavu, Ctr Re Etud Interdisciplinaires Appl Dev Durable C, Bukavu, DEM REP CONGO
ISTD Kalehe, Inst Super Tech Dev, Kalehe, DEM REP CONGOUniv Catholique Bukavu, Fac Agron, Bukavu, DEM REP CONGO
Bashagaluke, Janvier Bigabwa
Prasad, Pankaj
论文数: 0引用数: 0
h-index: 0
机构:
CSIR Natl Inst Oceanog, Geol Oceanog Div, Panaji, Goa, IndiaUniv Catholique Bukavu, Fac Agron, Bukavu, DEM REP CONGO
Prasad, Pankaj
Heri-Kazi, Aim B. Heri-Kazi
论文数: 0引用数: 0
h-index: 0
机构:
Univ Catholique Bukavu, Fac Agron, Bukavu, DEM REP CONGO
ISTD Mulungu, Inst Super Tech Dev, Mulungu, DEM REP CONGOUniv Catholique Bukavu, Fac Agron, Bukavu, DEM REP CONGO
Heri-Kazi, Aim B. Heri-Kazi
Kushwaha, Nand Lal
论文数: 0引用数: 0
h-index: 0
机构:
ICAR Indian Agr Res Inst, Div Agr Engn, New Delhi 110012, IndiaUniv Catholique Bukavu, Fac Agron, Bukavu, DEM REP CONGO
Kushwaha, Nand Lal
Masroor, Md
论文数: 0引用数: 0
h-index: 0
机构:
Jamia Millia Islamia, Fac Nat Sci, Dept Geog, New Delhi, IndiaUniv Catholique Bukavu, Fac Agron, Bukavu, DEM REP CONGO
Masroor, Md
Choudhari, Pandurang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Mumbai, Dept Geog, Mumbai, IndiaUniv Catholique Bukavu, Fac Agron, Bukavu, DEM REP CONGO
Choudhari, Pandurang
Elbeltagi, Ahmed
论文数: 0引用数: 0
h-index: 0
机构:
Mansoura Univ, Fac Agr, Agr Engn Dept, Mansoura 35516, EgyptUniv Catholique Bukavu, Fac Agron, Bukavu, DEM REP CONGO
Elbeltagi, Ahmed
Sajjad, Haroon
论文数: 0引用数: 0
h-index: 0
机构:
Jamia Millia Islamia, Fac Nat Sci, Dept Geog, New Delhi, IndiaUniv Catholique Bukavu, Fac Agron, Bukavu, DEM REP CONGO
Sajjad, Haroon
Mohammed, Safwan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Debrecen, Inst Land Use Tech & Prec Technol, Fac Agr & Food Sci & Environm Management, H-4032 Debrecen, HungaryUniv Catholique Bukavu, Fac Agron, Bukavu, DEM REP CONGO