Comment on "Predicting reaction performance in C-N cross-coupling using machine learning"

被引:106
作者
Chuang, Kangway V.
Keiser, Michael J. [1 ]
机构
[1] Univ Calif San Francisco, Inst Neurodegenerat Dis, Dept Bioengn & Therapeut Sci, Dept Pharmaceut Chem, San Francisco, CA 94143 USA
关键词
D O I
10.1126/science.aat8603
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Ahneman et al. (Reports, 13 April 2018) applied machine learning models to predict C-N cross-coupling reaction yields. The models use atomic, electronic, and vibrational descriptors as input features. However, the experimental design is insufficient to distinguish models trained on chemical features from those trained solely on random-valued features in retrospective and prospective test scenarios, thus failing classical controls in machine learning.
引用
收藏
页数:2
相关论文
共 11 条
[1]   Predicting reaction performance in C-N cross-coupling using machine learning [J].
Ahneman, Derek T. ;
Estrada, Jesus G. ;
Lin, Shishi ;
Dreher, Spencer D. ;
Doyle, Abigail G. .
SCIENCE, 2018, 360 (6385) :186-190
[2]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[3]   METHOD OF MULTIPLE WORKING HYPOTHESES [J].
CHAMBERLIN, TC .
SCIENCE, 1965, 148 (3671) :754-+
[4]   Intermolecular Reaction Screening as a Tool for Reaction Evaluation [J].
Collins, Karl D. ;
Glorius, Frank .
ACCOUNTS OF CHEMICAL RESEARCH, 2015, 48 (03) :619-627
[5]  
Draper N., 1998, APPL REGRESSION ANAL, V3rd, P299
[6]   Classification trees with unbiased multiway splits [J].
Kim, H ;
Loh, WY .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (454) :589-604
[7]  
Langley P., 1988, Machine Learning, V3, P5, DOI 10.1023/A:1022623814640
[8]  
Pedregosa F, 2011, J MACH LEARN RES, V12, P2825
[10]   Applications of Palladium-Catalyzed C-N Cross-Coupling Reactions [J].
Ruiz-Castillo, Paula ;
Buchwald, Stephen L. .
CHEMICAL REVIEWS, 2016, 116 (19) :12564-12649