Stochastic treatment of the solutions for the resonant nonlinear Schrodinger equation with spatio-temporal dispersions and inter-modal using beta distribution

被引:36
作者
Alharbi, Yousef F. [1 ]
Abdelrahman, M. A. E. [1 ,2 ]
Sohaly, M. A. [2 ]
Inc, Mustafa [3 ,4 ]
机构
[1] Taibah Univ, Coll Sci, Dept Math, Al Madinah Al Munawarah, Saudi Arabia
[2] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
[3] Firat Univ, Fac Sci, Dept Math, TR-23119 Elazig, Turkey
[4] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
关键词
ELLIPTIC FUNCTION-METHOD; OPTICAL SOLITONS; WAVE SOLUTIONS; EXPANSION METHOD;
D O I
10.1140/epjp/s13360-020-00371-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, the extended Jacobian elliptic function expansion method is implemented in order to construct some new traveling wave solutions for the resonant nonlinear Schrodinger equation with both spatio-temporal dispersion and inter-modal dispersion. These new traveling wave solutions are obtained by the proposed method, which is easy to implement and computationally very attractive. Moreover, these solutions may be applicable for some physical fields, such as plasma physics. The main aim of this paper is the stochastic treatment of the solutions when the spatio-temporal coefficient or the wave transition is beta random variables. The priority of using beta statistical distribution for the spatio-temporal is discussed. Some graphical simulations are given to illustrate the behavior of these solutions in the deterministic and stochastic case studies. Indeed the proposed techniques are very powerful tool to solve other models in applied science.
引用
收藏
页数:14
相关论文
共 36 条
[1]   On the new wave solutions to the MCH equation [J].
Abdelrahman, M. A. E. ;
Sohaly, M. A. .
INDIAN JOURNAL OF PHYSICS, 2019, 93 (07) :903-911
[2]   The coupled nonlinear Schrodinger-type equations [J].
Abdelrahman, Mahmoud A. E. ;
Hassan, S. Z. ;
Inc, Mustafa .
MODERN PHYSICS LETTERS B, 2020, 34 (06)
[3]   The development of the deterministic nonlinear PDEs in particle physics to stochastic case [J].
Abdelrahman, Mahmoud A. E. ;
Sohaly, M. A. .
RESULTS IN PHYSICS, 2018, 9 :344-350
[4]  
[Anonymous], 2018, OPT QUANTUM ELECT
[5]  
[Anonymous], OPEN J DISCRET MATH
[6]  
[Anonymous], 2012, INT J NONLIN SCI NUM
[7]   New singular soliton solutions to the longitudinal wave equation in a magneto-electro-elastic circular rod with M-derivative [J].
Baskonus, H. M. ;
Gomez-Aguilar, J. F. .
MODERN PHYSICS LETTERS B, 2019, 33 (21)
[8]   DISINTEGRATION OF WAVE TRAINS ON DEEP WATER .1. THEORY [J].
BENJAMIN, TB ;
FEIR, JE .
JOURNAL OF FLUID MECHANICS, 1967, 27 :417-&
[9]   Resonant optical solitons with quadratic-cubic nonlinearity by semi-inverse variational principle [J].
Biswas, Anjan ;
Ullah, Malik Zaka ;
Zhou, Qin ;
Moshokoa, Seithuti P. ;
Triki, Houria ;
Belic, Milivoj .
OPTIK, 2017, 145 :18-21
[10]   Optical solitons to the resonant nonlinear Schrodinger equation with both spatio-temporal and inter-modal dispersions under Kerr law nonlinearity [J].
Bulut, Hasan ;
Sulaiman, Tukur Abdulkadir ;
Baskonus, Haci Mehmet .
OPTIK, 2018, 163 :49-55