Preferential binding of the histone (H3-H4)2 tetramer by NAP1 is mediated by the amino-terminal histone tails

被引:93
作者
McBryant, SJ [1 ]
Park, YJ [1 ]
Abernathy, SM [1 ]
Laybourn, PJ [1 ]
Nyborg, JK [1 ]
Luger, K [1 ]
机构
[1] Colorado State Univ, Dept Biochem & Mol Biol, Ft Collins, CO 80523 USA
关键词
D O I
10.1074/jbc.M305636200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The yeast nucleosome assembly protein 1 (yNAP1) participates in many diverse activities, such as the assembly of newly synthesized DNA into chromatin and the rearrangement of nucleosomes during transcriptional activation. yNAP1 does not require ATP hydrolysis to perform these functions and is a valuable tool for in vitro chromatin assembly. Using recombinant histone complexes, we show that yNAP1 has a preference for binding the (H3-H4)(2) tetramer over the (H2A-H2B) dimer. We find that the loss of the histone tails abrogates this preference for H3 and H4, and we demonstrate a direct interaction between yNAP1 and the amino-terminal tails of H3 and H4. yNAP1 binds to one histone fold domain, thus specifying the stoichiometry of the complexes formed with the histone dimer and tetramer. Finally, we provide evidence that the acidic carboxyl-terminal region of yNAP1, although dispensable for nucleosome assembly in vitro, contributes to binding via structure-independent electrostatic interactions. Our results are consistent with recent mechanistic investigations of NAP1 and expand our understanding of the histone chaperone family of assembly factors.
引用
收藏
页码:44574 / 44583
页数:10
相关论文
共 63 条
[1]   Histone chaperones and nucleosome assembly [J].
Akey, CW ;
Luger, K .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2003, 13 (01) :6-14
[2]   Control of mitotic events by Nap1 and the Gin4 kinase [J].
Altman, R ;
Kellogg, D .
JOURNAL OF CELL BIOLOGY, 1997, 138 (01) :119-130
[3]   Selective requirements for histone H3 and H4N termini in p300-dependent transcriptional activation from chromatin [J].
An, WJ ;
Palhan, VB ;
Karymov, MA ;
Leuba, SH ;
Roeder, RG .
MOLECULAR CELL, 2002, 9 (04) :811-821
[4]   THE HISTONE FOLD - A UBIQUITOUS ARCHITECTURAL MOTIF UTILIZED IN DNA COMPACTION AND PROTEIN DIMERIZATION [J].
ARENTS, G ;
MOUDRIANAKIS, EN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (24) :11170-11174
[5]   THE NUCLEOSOMAL CORE HISTONE OCTAMER AT 3.1-A RESOLUTION - A TRIPARTITE PROTEIN ASSEMBLY AND A LEFT-HANDED SUPERHELIX [J].
ARENTS, G ;
BURLINGAME, RW ;
WANG, BC ;
LOVE, WE ;
MOUDRIANAKIS, EN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (22) :10148-10152
[6]   Dual roles of p300 in chromatin assembly and transcriptional activation in cooperation with nucleosome assembly protein 1 in vitro [J].
Asahara, H ;
Tartare-Deckert, S ;
Nakagawa, T ;
Ikehara, T ;
Hirose, F ;
Hunter, T ;
Ito, T ;
Montminy, M .
MOLECULAR AND CELLULAR BIOLOGY, 2002, 22 (09) :2974-2983
[7]   USE OF SELECTIVELY TRYPSINIZED NUCLEOSOME CORE PARTICLES TO ANALYZE THE ROLE OF THE HISTONE TAILS IN THE STABILIZATION OF THE NUCLEOSOME [J].
AUSIO, J ;
DONG, F ;
VANHOLDE, KE .
JOURNAL OF MOLECULAR BIOLOGY, 1989, 206 (03) :451-463
[8]   EUKARYOTIC RNA POLYMERASE-II BINDS TO NUCLEOSOME CORES FROM TRANSCRIBED GENES [J].
BAER, BW ;
RHODES, D .
NATURE, 1983, 301 (5900) :482-488
[9]   PROTEASES AS STRUCTURAL PROBES FOR CHROMATIN - THE DOMAIN-STRUCTURE OF HISTONES [J].
BOHM, L ;
CRANEROBINSON, C .
BIOSCIENCE REPORTS, 1984, 4 (05) :365-386
[10]   The core histone N termini function independently of linker histones during chromatin condensation [J].
Carruthers, LM ;
Hansen, JC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (47) :37285-37290