Boundary layer analysis and quasi-neutral limits in the drift-diffusion equations

被引:3
|
作者
Peng, YJ [1 ]
机构
[1] Univ Clermont Ferrand 2, Lab Math Appl, CNRS, UMR 6620, F-63177 Aubiere, France
[2] Chinese Univ Hong Kong, Inst Math Sci, Shatin, Hong Kong, Peoples R China
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2001年 / 35卷 / 02期
关键词
asymptotic analysis; boundary layers; optimal convergence rate; drift-diffusion equations;
D O I
10.1051/m2an:2001116
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We deal with boundary layers and quasi-neutral limits in the drift-diffusion equations. We first show that this limit is unique and determined by a system of two decoupled equations with given initial and boundary conditions. Then we establish the boundary layer equations and prove the existence and uniqueness of solutions with exponential decay. This yields a globally strong convergence (with respect to the domain) of the sequence of solutions and an optimal convergence rate O(epsilon (1/2)) to the quasi-neutral limit in L-2.
引用
收藏
页码:295 / 312
页数:18
相关论文
共 50 条